ﻻ يوجد ملخص باللغة العربية
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory and Onsager reciprocal relations for the $mathcal{PT}$-symmetric quantum system are recovered as special cases of the universal quantum work relation in $mathcal{PT}$-symmetric quantum system. In the regime of broken $mathcal{PT}$ symmetry, the universal quantum work relation does not hold as the norm is not preserved during the dynamics.
A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality i
Thermodynamics and information theory have been intimately related since the times of Maxwell and Boltzmann. Recently it was shown that the dissipated work in an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two stat
Recent work by Teifel and Mahler [Eur. Phys. J. B 75, 275 (2010)] raises legitimate concerns regarding the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study this issue in the context of the rapidly e
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant
Parity-time (PT) non-Hermitian (NH) system has significant effects on observable in a great variety of physical phenomena in NH physics. However, the PT-symmetric NH quantum system at finite temperature (the so-called thermal PT system) has never bee