ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum work relations and response theory

129   0   0.0 ( 0 )
 نشر من قبل Andrieux David
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality is recovered in the case this observable vanishes. The Green-Kubo formula and the Casimir-Onsager reciprocity relations are deduced thereof in the linear response regime.



قيم البحث

اقرأ أيضاً

69 - Bo-Bo Wei 2017
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic rev ersibility. The quantum Jarzynski equality, linear response theory and Onsager reciprocal relations for the $mathcal{PT}$-symmetric quantum system are recovered as special cases of the universal quantum work relation in $mathcal{PT}$-symmetric quantum system. In the regime of broken $mathcal{PT}$ symmetry, the universal quantum work relation does not hold as the norm is not preserved during the dynamics.
Recent work by Teifel and Mahler [Eur. Phys. J. B 75, 275 (2010)] raises legitimate concerns regarding the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study this issue in the context of the rapidly e xpanding one-dimensional quantum piston. Utilizing exact solutions of the time-dependent Schru007fodinger equation, we find that the evolution of the wave function can be decomposed into static and dynamic components, which have simple semiclassical interpretations in terms of particle-piston collisions. We show that nonequilibrium work relations remains valid at any finite piston speed, provided both components are included, and we study explicitly the work distribution for this model system.
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a fluctuation dissipation theorem for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.
We derive analogues of the Jarzynski equality and Crooks relation to characterise the nonequilibrium work associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial temperature profile. The stationar y state of such an oscillator is described by Tsallis statistics, and the work relations for certain processes may be expressed in terms of q-exponentials. We suggest that these identities might be a feature of nonequilibrium processes in circumstances where Tsallis distributions are found.
81 - T. Koide 2017
Jarzynskis nonequilibrium work relation can be understood as the realization of the (hidden) time-generator reciprocal symmetry satisfied for the conditional probability function. To show this, we introduce the reciprocal process where the classical probability theory is expressed with real wave functions, and derive a mathematical relation using the symmetry. We further discuss that the descriptions by the standard Markov process from an initial equilibrium state are indistinguishable from those by the reciprocal process. Then the Jarzynski relation is obtained from the mathematical relation for the Markov processes described by the Fokker-Planck, Kramers and relativistic Kramers equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا