ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact solutions for silicon photomultipliers models and application to measurements

100   0   0.0 ( 0 )
 نشر من قبل Enrico Junior Schioppa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark count rate and correlated noise rate are among the main parameters that characterize silicon photomultipliers (SiPM). Typically, these parameters are evaluated by applying approximate formulas, or by fitting specific models, to the measured SiPM noise spectra. Here a novel approach is presented, where exact formulas are derived from a statistical model of dark counts and correlated noise generation. The method allows one to measure the true value of such parameters from the areas of just the first peaks in the dark spectrum. A numerical analysis shows the accuracy of the method.



قيم البحث

اقرأ أيضاً

195 - S. Korpar 2008
A novel photon detector, the Silicon Photomultiplier (SiPM), has been tested in proximity focusing Ring Imaging Cherenkov (RICH) counters that were exposed to cosmic-ray particles in Ljubljana, and a 2 GeV electron beam at the KEK research facility. This type of RICH detector is a candidate for the particle identification detector upgrade of the BELLE detector at the KEK B-factory, for which the use of SiPMs, microchannel plate photomultiplier tubes or hybrid avalanche photodetectors, rather than traditional Photomultiplier Tubes (PMTs) is essential due to the presence of high magnetic fields. In both experiments, SiPMs are found to compare favourably with PMTs, with higher photon detection rates per unit area. Through the use of hemispherical and truncated pyramid light guides to concentrate photons onto the active surface area, the light yield increases significantly. An estimate of the contribution to dark noise from false coincidences between SiPMs in an array is also presented.
Silicon Photomultipliers (SiPMs) are attractive candidates for light detectors for next generation liquid xenon double-beta decay experiments, like nEXO. In this paper we discuss the requirements that the SiPMs must satisfy in order to be suitable fo r nEXO and similar experiments, describe the two test setups operated by the nEXO collaboration, and present the results of characterization of SiPMs from several vendors. In particular, we find that the photon detection efficiency at the peak of xenon scintillation light emission (175-178 nm) approaches the nEXO requirements for tested FBK and Hamamatsu devices. Additionally, the nEXO collaboration performed radioassay of several grams of bare FBK devices using neutron activation analysis, indicating levels of 40K, 232Th, and 238U of the order of <0.15, (6.9e10-4 - 1.3e10-2), and <0.11 mBq/kg, respectively.
This paper describes an experimental setup that has been developed to measure and characterise properties of Silicon Photomultipliers (SiPM). The measured SiPM properties are of general interest for a multitude of potential applications and comprise the Photon Detection Efficiency (PDE), the voltage dependent cross-talk and the after-pulse probabilities. With the described setup the absolute PDE can be determined as a function of wavelength covering a spectral range from 350 to 1000nm. In addition, a method is presented which allows to study the pixel uniformity in terms of the spatial variations of sensitivity and gain. The results from various commercially available SiPMs - three HAMAMATSU MPPCs and one SensL SPM - are presented and compared.
Silicon Photomultipliers with cell-pitch ranging from 12 $mu$m to 20 $mu$m were tested against neutron irradiation at moderate fluences to study their performance for calorimetric applications. The photosensors were developed by FBK employing the RGB -HD technology. We performed irradiation tests up to $2 times 10^{11}$ n/cm$^2$ (1 MeV eq.) at the INFN-LNL Irradiation Test facility. The SiPMs were characterized on-site (dark current and photoelectron response) during and after irradiations at different fluences. The irradiated SiPMs were installed in the ENUBET compact calorimetric modules and characterized with muons and electrons at the CERN East Area facility. The tests demonstrate that both the electromagnetic response and the sensitivity to minimum ionizing particles are retained after irradiation. Gain compensation can be achieved increasing the bias voltage well within the operation range of the SiPMs. The sensitivity to single photoelectrons is lost at $sim 10^{10}$ n/cm$^2$ due to the increase of the dark current.
113 - W. Wang , G.F. Cao , Z.Q. Xie 2020
Reflectance of silicon photomultipliers (SiPMs) is an important aspect to understand the large scale SiPM-based detector systems and evaluate the performance of SiPMs. We report the reflactance of two SiPMs, NUV-HD-lowCT and S14160-60-50HS manufactur ed by Fondazione Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) respectively, in linear alkylbenzene (LAB) and in air at visible wavelengths. Our results show that the reflectance of the FBK SiPM in air varies in the range of 14% to 23% , depending on wavelengths and angle of incidence, which is 2 time larger than that of the HPK device. This indicates that the two manufacturers are using different designs of anti-reflective coating on SiPMs surfaces. The reflectance is reduced by about 10% when SiPMs are immersed in LAB, compared with that measured in air. The profiles of reflected light beams are also measured by a charge-coupled device (CCD) camera for the two SiPMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا