ترغب بنشر مسار تعليمي؟ اضغط هنا

The pion vector form factor from Lattice QCD at the physical point

83   0   0.0 ( 0 )
 نشر من قبل Silvano Simula
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an investigation of the electromagnetic pion form factor, $F_pi(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N_f = 2$ twisted-mass quarks at maximal twist including a clover term. Momentum is injected using non-periodic boundary conditions and the calculations are carried out at a fixed lattice spacing ($a simeq 0.09$ fm) and with pion masses equal to its physical value, 240 MeV and 340 MeV. Our data are successfully analyzed using Chiral Perturbation Theory at next-to-leading order in the light-quark mass. For each pion mass two different lattice volumes are used to take care of finite size effects. Our final result for the squared charge radius is $langle r^2 rangle_pi = 0.443~(29)$ fm$^2$, where the error includes several sources of systematic errors except the uncertainty related to discretization effects. The corresponding value of the SU(2) chiral low-energy constant $overline{ell}_6$ is equal to $overline{ell}_6 = 16.2 ~ (1.0)$.



قيم البحث

اقرأ أيضاً

We present a comprehensive study of the electromagnetic form factor, the decay constant and the mass of the pion computed in lattice QCD with two degenerate O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05-0.08fm and pion masses between 280 and 630MeV at m_pi L >~ 4. Using partially twisted boundary conditions and stochastic estimators, we obtain a dense set of precise data points for the form factor at very small momentum transfers, allowing for a model-independent extraction of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model lattice artefacts is then compared to the data. At next-to-leading order the effective theory fails to produce a consistent description of the full set of pion observables but describes the data well when only the decay constant and mass are considered. By contrast, using the next-to-next-to-leading order expressions to perform global fits result in a consistent description of all data. We obtain <r^2_pi>=0.481(33)(13)fm^2 as our final result for the charge radius at the physical point. Our calculation also yields estimates for the pion decay constant in the chiral limit, F_pi/F=1.080(16)(6), the quark condensate, Sigma^{1/3}_MSbar(2GeV)=261(13)(1)MeV and several low-energy constants of SU(2) ChPT.
115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra nge and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
126 - Shoichi Sasaki 2012
We present the first result for the hyperon vector form factor f_1 for Xi^0 -> Sigma^+ l bar{nu} and Sigma^- -> n l bar{nu} semileptonic decays from fully dynamical lattice QCD. The calculations are carried out with gauge configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action at beta=2.13, corresponding to a cutoff 1/a=1.73 GeV. Our results, which are calculated at the lighter three sea quark masses (the lightest pion mass down to approximately 330 MeV), show that a sign of the second-order correction of SU(3) breaking on the hyperon vector coupling f_1(0) is negative. The tendency of the SU(3) breaking correction observed in this work disagrees with predictions of both the latest baryon chiral perturbation theory result and large N_c analysis.
We present the first calculation of the pion electromagnetic form factor at physical light quark masses. This form factor parameterises the deviations from the behaviour of a point-like particle when a photon hits the pion. These deviations result fr om the internal structure of the pion and can thus be calculated in QCD. We use three sets (different lattice spacings) of $n_f = 2+1+1$ lattice configurations generated by the MILC collaboration. The Highly Improved Staggered Quark formalism (HISQ) is used for all of the sea and valence quarks. Using lattice configurations with $u$/$d$ quark masses very close to the physical value is a big advantage, as we avoid the chiral extrapolation. We study the shape of the vector ($f_+$) form factor in the $q^2$ range from $0$ to $-0.15$~GeV$^2$ and extract the mean square radius, $langle r^2_vrangle$. The shape of the vector form factor and the resulting radius is compared with experiment. We also discuss the scalar form factor and radius extracted from that, which is not directly accessible to experiment. We have also calculated the contributions from the disconnected diagrams to the scalar form factor at small $q^2$ and discuss their impact on the scalar radius $langle r^2_srangle$.
We report on a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present results computed with domain wall valence fermions on MILC asqtad lattices, as well as with Wilso n fermions on quenched lattices. The methods can easily be extended to rho-to-gamma-pi transition form factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا