ﻻ يوجد ملخص باللغة العربية
We couple a proximity Josephson junction to a Joule-heated normal metal film and measure its electron temperature under steady state and nonequilibrium conditions. With a timed sequence of heating and temperature probing pulses, we are able to monitor its electron temperature in nonequilibrium with effectively zero back-action from the temperature measurement in the form of additional dissipation or thermal conductance. The experiments demonstrate the possibility of using a fast proximity Josephson junction thermometer for studying thermal transport in mesoscopic systems and for calorimetry.
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable
We describe the proximity effect in a short disordered metallic junction between three superconducting leads. Andreev bound states in the multi-terminal junction may cross the Fermi level. We reveal that for a quasi-continuous metallic density of sta
We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) built upon a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, r
We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cr
Experiments on planar Josephson junction architectures have recently been shown to provide an alternative way of creating topological superconductors hosting accessible Majorana modes. These zero-energy modes can be found at the ends of a one-dimensi