ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction

145   0   0.0 ( 0 )
 نشر من قبل Robab Najafi Jabdaraghi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise $sim 4;muPhi_0/Hz^{1/2}$, set by the shot noise of the probe tunnel junction. The flux noise performance can be improved by further optimization of the SQUIPT parameters, primarily minimization of the proximity junction length and cross section. Furthermore, the experiment demonstrates that the setup can be used to investigate shot noise in other nonlinear devices with high impedance. This technique opens the opportunity to measure sensitive magnetometers including SQUIPT devices with very low dissipation.



قيم البحث

اقرأ أيضاً

We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon assisted quasiparticle tunneling in an AC-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by ev aluating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire junction and find the zero frequency impedance $Z(0)=492,Omega$ with a cutoff frequency of $f_0=33.1,$GHz. We extract a circuit coupling efficiency of $etaapprox 0.1$ and a detector quantum efficiency approaching unity in the high frequency limit. In addition to the Josephson radiation, we identify a shot-noise contribution with a Fano factor $Fapprox1$, consistently with the presence of single electron states in the nanowire channel.
72 - F. T. Vasko 2017
We study a superconducting transmission line (TL) formed by distributed LC oscillators and excited by external magnetic fluxes which are aroused from random magnetization (A) placed in substrate or (B) distributed at interfaces of a two-wire TL. Low- frequency dynamics of a random magnetic field is described based on the diffusion Langevin equation with a short-range source caused by (a) random amplitude or (b) gradient of magnetization. For a TL modeled as a two-port network with open and shorted ends, the effective magnetic flux at the open end has non-local dependency on noise distribution along the TL. The flux-flux correlation function is evaluated and analyzed for the regimes (Aa), (Ab). (Ba), and (Bb). Essential frequency dispersion takes place around the inverse diffusion time of random flux along the TL. Typically, noise effect increases with size faster than the area of TL. The flux-flux correlator can be verified both via the population relaxation rate of the qubit, which is formed by the Josephson junction shunted by the TL with flux noises, and via random voltage at the open end of the TL.
Experiments on planar Josephson junction architectures have recently been shown to provide an alternative way of creating topological superconductors hosting accessible Majorana modes. These zero-energy modes can be found at the ends of a one-dimensi onal channel in the junction of a two-dimensional electron gas (2DEG) proximitized by two spatially separated superconductors. The channel, which is below the break between the superconductors, is not in direct contact with the superconducting leads, so that proximity coupling is expected to be weaker and less well-controlled than in the simple nanowire configuration widely discussed in the literature. This provides a strong incentive for this paper which investigates the nature of proximitization in these Josephson architectures. At a microscopic level we demonstrate how and when it can lead to topological phases. We do so by going beyond simple tunneling models through solving self-consistently the Bogoliubov-de Gennes equations of a heterostructure multicomponent system involving two spatially separated $s$-wave superconductors in contact with a normal Rashba spin-orbit-coupled 2DEG. Importantly, within our self-consistent theory we present ways of maximizing the proximity-induced superconducting gap by studying the effect of the Rashba spin-orbit coupling, chemical potential mismatch between the superconductor and 2DEG, and sample geometry on the gap. Finally, we note (as in experiment) a Fulde-Ferrell-Larkin-Ovchinnikov phase is also found to appear in the 2DEG channel, albeit under circumstances which are not ideal for topological superconducting phase.
We have studied mesoscopic Josephson junctions formed by highly $n$-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to $ sim 7$ K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.
We report on the fabrication and measurements of a superconducting junction of a single-crystalline Au nanowire, connected to Al electrodes. Current-Voltage characteristic curve shows clear supercurrent branch below the superconducting transition tem perature of Al and quantized voltage plateaus on application of microwave radiation, as expected from Josephson relations. Highly transparent (0.95) contacts very close to an ideal limit of 1 are formed at the interface between the normal metal (Au) and the superconductor (Al). The very high transparency is ascribed to the single crystallinity of a Au nanowire and the formation of an oxide-free contact between Au and Al. The sub-gap structures of the differential conductance are well explained by coherent multiple Andreev reflections (MAR), the hallmark of mesoscopic Josephson junctions. These observations demonstrate that single crystalline Au nanowires can be employed to develop novel quantum devices utilizing coherent electrical transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا