ﻻ يوجد ملخص باللغة العربية
Due to heavy congestion in lower frequency bands, engineers are looking for new frequency bands to support new services that require higher data rates, which in turn needs broader bandwidths. To meet this requirement, extremely high frequency (EHF), particularly Q (36 to 46 GHz) and V (46 to 56 GHz) bands, is the best viable solution because of its complete availability. The most serious challenge the EHF band poses is the attenuation caused by rain. This paper investigates the effect of the rain on Q and V bands performances in Bangladeshi climatic conditions. The rain attenuations of the two bands are predicted for the four main regions of Bangladesh using ITU rain attenuation model. The measured rain statistics is used for this prediction. It is observed that the attenuation due to rain in the Q/V band reaches up to 150 dB which is much higher than that of the currently used Ka band. The variability of the rain attenuation is also investigated over different sessions of Bangladesh. The attenuation varies from 40 dB to 170 dB depending on the months. Finally, the amount of rain fade required to compensate the high rain attenuation is also predicted for different elevation angles.
Future cellular systems will make use of millimeter wave (mmWave) frequency bands. Many users in these bands are located indoors, i.e., inside buildings, homes, and offices. Typical building material attenuations in these high frequency ranges are of
Inter-satellite links (ISLs) are adopted in global navigation satellite systems (GNSSs) for high-precision orbit determination and space-based end-to-end telemetry telecommand control and communications. Due to limited onboard ISL terminals, the poll
To provide high data rate aerial links for 5G and beyond wireless networks, the integration of free-space optical (FSO) communications and aerial platforms has been recently suggested as a practical solution. To fully reap the benefit of aerial-based
The establishment of quantum communication links over a global scale is enabled by satellite nodes. We examine the influence of Earths atmosphere on the performance of quantum optical communication channels with emphasis on the downlink scenario. We
The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), t