ﻻ يوجد ملخص باللغة العربية
The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), the TM has received less attention. Moreover, in the context of the emerging quantum internet and satellite-based quantum communications, the TM has received no attention. In this work, we remedy this situation by considering the traversal through the satellite-to-Earth channel of single photons encoded in TM space. Our results indicate that for anticipated atmospheric conditions the photonic TM offers a promising avenue for the delivery of high-throughput quantum communications from a satellite to a terrestrial receiver. In particular, we show how these modes can provide for improved multiplexing performance and superior quantum key distribution in the satellite-to-Earth channel, relative to OAM single-photon states. The levels of TM discrimination that guarantee this outcome are outlined and implications of our results for the emerging satellite-based quantum internet are discussed.
Satellite-based quantum communications enable a bright future for global-scale information security. However, the spin orbital momentum of light, currently used in many mainstream quantum communication systems, only allows for quantum encoding in a t
Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this
In this work, we explore the feasibility of performing satellite-to-Earth quantum key distribution (QKD) using the orbital angular momentum (OAM) of light. Due to the fragility of OAM states the conventional wisdom is that turbulence would render OAM
Satellite quantum communications are emerging within the panorama of quantum technologies as a more effective strategy to distribute completely-secure keys at very long distances, therefore playing an important role in the architecture of a large-sca
In this note, we characterize the form of an invertible quantum operation, i.e., a completely positive trace preserving linear transformation (a CPTP map) whose inverse is also a CPTP map. The precise form of such maps becomes important in contexts s