ﻻ يوجد ملخص باللغة العربية
Both longitudinal and anomalous Hall conductivity are computed in the model of two-dimensional Dirac fermions with a mass in the presence of arbitrary correlated weak disorder. The anomalous Hall conductivity is shown to be highly sensitive to the correlation properties of the random potential, such as the correlation length, while it remains independent of the integral disorder strength. This property extends beyond the Dirac model making the anomalous Hall effect an interesting tool to probe disorder correlations.
We consider the Anomalous Hall Effect (AHE) in thin disordered ferromagnetic films. Using a microscopic model of electrons in a random potential of identical impurities including spin-orbit coupling, we develop a general formulation for strong, finit
The anomalous Hall effect in disordered band ferromagnets is considered in the framework of quantum transport theory. A microscopic model of electrons in a random potential of identical impurities including spin-orbit coupling is used. The Hall condu
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
We evaluate the localization length of the wave solution of a random potential characterized by an arbitrary autocorrelation function. We go beyond the Born approximation to evaluate the localization length using a non-linear approximation and calcul
We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitabl