ﻻ يوجد ملخص باللغة العربية
In this paper, spatially homogeneous and anisotropic Bianchi type-I cosmological models of Brans-Dicke theory of gravitation are investigated. The model represents accelerating universe at present and is considered to be dominated by dark energy. Cosmological constant $Lambda$ is considered as a candidate for the dark energy that has negative pressure and is responsible for the present acceleration. The derived model agrees at par with the recent SN Ia observations. We have set BD-coupling constant $omega$ to be ~$40000$, ~seeing the solar system tests and evidences. We have discussed the various physical and geometrical properties of the models and have compared them with the corresponding relativistic models.
In this paper, we investigate a transitioning model of Bianchi type V universe in Brans-Dicke theory of gravitation. The derived model not only validates Machs principle but also describes the present acceleration of the universe. In this paper, our
In this paper, we have investigated late time acceleration for a spatially flat dust filled Universe in Brans-Dicke theory in the presence of a positive cosmological constant $Lambda$ . Expressions for Hubbles constant, luminosity distance and appare
In the context of generalised Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the
Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we fo
We extend recent discussions of singularity avoidance in quantum gravity from isotropic to anisotropic cosmological models. The investigation is done in the framework of quantum geometrodynamics (Wheeler-DeWitt equation). We formulate criteria of sin