ﻻ يوجد ملخص باللغة العربية
Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we focus on a non-interacting universe, and thereinafter, we study the results of considering a sign-changeable interaction between the dark sectors of the cosmos. Our investigations show that, compared with the flat case, the power and freedom of the model in describing the cosmic evolution is significantly increased in the presence of the curvature. The stability analysis also indicates that, independent of the universe curvature, both the interacting and non-interacting cases are classically unstable. In fact, both the classical stability criterion and an acceptable behavior for the cosmos quantities, including the deceleration and density parameters as well as the equation of state, are not simultaneously obtainable.
In this paper, we study the dynamics of non-interacting and interacting holographic dark energy models in the framework of Brans-Dicke theory. As systems infra-red cut-off we consider the future event horizon. The motivation of this work is to use th
In the context of generalised Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the
In order to apply holography and entropy relations to the whole universe, which is a gravitational and thus nonextensive system, for consistency one should use the generalized definition for the universe horizon entropy, namely Tsallis nonextensive e
We study some cosmological features of Tsallis holographic dark energy (THDE) in Cyclic, DGP and RS II braneworlds. In our setup, a flat FRW universe is considered filled by a pressureless source and THDE with the Hubble radius as the IR cutoff, whil
It has been found that the geometrical diagnostic methods can break the degeneracy for dark energy models. In this paper, we investigate the $Om$ diagnostic, the statefinder hierarchy $S_{n}$ and the composite null diagnostic ${S_{n},epsilon}$ for th