ﻻ يوجد ملخص باللغة العربية
The fundamental principles of quantum mechanics are considered to be hard for understanding by unprepared listeners, many attempts of its popularization turned out to be either difficult to grasp or incorrect. We propose quantum cryptography as a very effective tool for quantum physics introduction as it has the desired property set to intrigue students and outline the basic quantum principles. A modular desktop quantum cryptography setup that can be used for both educational and research purposes is presented. The carried out laboratory and field tests demonstrated usability and reliability of the developed system.
In counterfactual QKD information is transfered, in a secure way, between Alice and Bob even when no particle carrying the information is in fact transmitted between them. In this letter we fully implement the scheme for counterfactual QKD proposed i
Nuclear magnetic resonance techniques are used to realize a quantum algorithm experimentally. The algorithm allows a simple NMR quantum computer to determine global properties of an unknown function requiring fewer function ``calls than is possible using a classical computer.
In state-of-the-art quantum key distribution (QKD) systems, the main limiting factor in increasing the key generation rate is the timing resolution in detecting photons. Here, we present and experimentally demonstrate a strategy to overcome this limi
We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system.
Due to its versatility and low cost, the use of unmanned aerial vehicles has been rapidly spreading in recent years, in applications ranging form military operations, to land mapping, rescuing of lost people, aiding of natural disaster victims and ma