ترغب بنشر مسار تعليمي؟ اضغط هنا

First experimental realization of the Dirac oscillator

208   0   0.0 ( 0 )
 نشر من قبل John Alexander Franco
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yields the spectrum of the one-dimensional Dirac oscillator with and without mass term. The flexibility of the experimental set-up allows the implementation of other one-dimensional Dirac type equations.



قيم البحث

اقرأ أيضاً

394 - C. Quimbay , P. Strange 2013
We show how the two-dimensional Dirac oscillator model can describe some properties of electrons in graphene. This model explains the origin of the left-handed chirality observed for charge carriers in monolayer and bilayer graphene. The relativistic dispersion relation observed for monolayer graphene is obtained directly from the energy spectrum, while the parabolic dispersion relation observed for the case of bilayer graphene is obtained in the non-relativistic limit. Additionally, if an external magnetic field is applied, the unusual Landau-level spectrum for monolayer graphene is obtained, but for bilayer graphene the model predicts the existence of a magnetic field-dependent gap. Finally, this model also leads to the existence of a chiral phase transition.
Low-energy electrons near Dirac/Weyl nodal points mimic massless relativistic fermions. However, as they are not constrained by Lorentz invariance, they can exhibit tipped-over type-II Dirac/Weyl cones which provide highly anisotropic physical proper ties and responses, creating unique possibilities. Recently, they have been observed in several quantum and classical systems. Yet, there is still no simple and deterministic strategy to realize them since their nodal points are accidental degeneracies, unlike symmetry-guaranteed type-I counterparts. Here, we propose a band-folding scheme for constructing type-II Dirac points, and we use a tight-binding analysis to unveil its generality and deterministic nature. Through realizations in acoustics, type-II Dirac points are experimentally visualized and investigated using near-field mappings. As a direct effect of tipped-over Dirac cones, strongly tilted kink states originating from their valley-Hall properties are also observed. This deterministic scheme could serve as platform for further investigations of intriguing physics associated with various strongly Lorentz-violating nodal points.
Topological insulators are new states of matter in which the topological phase originates from symmetry breaking. Recently, time-reversal invariant topological insulators were demonstrated for classical wave systems, such as acoustic systems, but lim ited by inter-pseudo-spin or inter-valley backscattering. This challenge can be effectively overcome via breaking the time-reversal symmetry. Here, we report the first experimental realization of acoustic topological insulators with nonzero Chern numbers, viz., acoustic Chern insulator (ACI), by introducing an angular-momentum-biased resonator array with broken Lorentz reciprocity. High Q-factor resonance is leveraged to reduce the required speed of rotation. Experimental results show that the ACI featured with a stable and uniform metafluid flow bias supports one-way nonreciprocal transport of sound at the boundaries, which is topologically immune to the defect-induced scatterings. Our work opens up opportunities for exploring unique observable topological phases and developing practical nonreciprocal devices in acoustics.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repu lsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single - electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while pre venting heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow theoretical model down to about 80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature in agreement with the theory, reaching about 15 mK drop at the base temperature. CBR appears as a promising electronic cooler at temperatures well below 100 mK.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا