ﻻ يوجد ملخص باللغة العربية
Understanding defect effect on carrier dynamics is essential for both fundamental physics and potential applications of transition metal dichalcogenides. Here, the phenomenon of oxygen impurities trapping photo-excited carriers has been studied with ultrafast pump-probe spectroscopy. Oxygen impurities are intentionally created in exfoliated multilayer MoSe2 with Ar+ plasma irradiation and air exposure. After plasma treatment, the signal of transient absorption first increases and then decreases, which is a signature of defect capturing carriers. With larger density of oxygen defects, the trapping effect becomes more prominent. The trapping defect densities are estimated from the transient absorption signal, and its increasing trend in the longer-irradiated sample agrees with the results from X-ray photoelectron spectroscopy. First principle calculations with density functional theory reveal that oxygen atoms occupying Mo vacancies create mid-gap defect states, which are responsible for the carrier trapping. Our findings shed light on the important role of oxygen defects as carrier trappers in transition metal dichalcogenides, and facilitates defect engineering in relevant material and device applications.
We consider the effects of single impurities on polarons in three-dimensions (3D) using a continuous time quantum Monte-Carlo algorithm. An exact treatment of the phonon degrees of freedom leads to a very efficient algorithm and we are able to comput
Understanding carrier creation and evolution in materials initiated by pulsed optical excitation is central to developing ultrafast optoelectronics. We demonstrate herein that the dynamic response of a system can be drastically modified when its phys
We have quantified substitutional impurity concentrations in synthetic diamond crystals down to sub parts-per-billion levels. The capture lifetimes of electrons and excitons injected by photoexcitation were compared for several samples with different
Excitons in monolayer transition metal dichalcogenide (TMD) provide a paradigm of composite Boson in 2D system. This letter reports a photoluminescence and reflectance study of excitons in monolayer molybdenum diselenide (MoSe2) with electrostatic ga
Two-dimensional (2D) Van der Waals ferromagnets carry the promise of ultimately miniature spintronics and information storage devices. Among the newly discovered 2D ferromagnets all inherit the magnetic ordering from their bulk ancestors. Here we rep