ترغب بنشر مسار تعليمي؟ اضغط هنا

Equidistribution of divergent orbits of the diagonal group in the space of lattices

124   0   0.0 ( 0 )
 نشر من قبل Ofir David
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider divergent orbits of the group of diagonal matrices in the space of lattices in Euclidean space. We define two natural numerical invariants of such orbits: The discriminant - an integer - and the type - an integer vector. We then study the question of the limit distributional behaviour of these orbits as the discriminant goes to infinity. Using entropy methods we prove that for divergent orbits of a specific type, virtually any sequence of orbits equidistribute as the discriminant goes to infinity. Using measure rigidity for higher rank diagonal actions we complement this result and show that in dimension 3 or higher only very few of these divergent orbits can spend all of their life-span in a given compact set before they diverge.



قيم البحث

اقرأ أيضاً

248 - Uri Shapira , Cheng Zheng 2017
We define a natural topology on the collection of (equivalence classes up to scaling of) locally finite measures on a homogeneous space and prove that in this topology, pushforwards of certain infinite volume orbits equidistribute in the ambient spac e. As an application of our results we prove an asymptotic formula for the number of integral points in a ball on some varieties as the radius goes to infinity.
189 - Michael Baake 2008
Counting periodic orbits of endomorphisms on the 2-torus is considered, with special focus on the relation between global and local aspects and between the dynamical zeta function on the torus and its analogue on finite lattices. The situation on the lattices, up to local conjugacy, is completely determined by the determinant, the trace and a third invariant of the matrix defining the toral endomorphism.
161 - J. Beck , W.W.L. Chen 2021
We establish various analogs of the Kronecker-Weyl equidistribution theorem that can be considered higher-dimension
We prove results about orbit closures and equidistribution for the SL(2,R) action on the moduli space of compact Riemann surfaces, which are analogous to the theory of unipotent flows. The proofs of the main theorems rely on the measure classificatio n theorem of [EMi2] and a certain isolation property of closed SL(2,R) invariant manifolds developed in this paper.
We confirm a conjecture of Jens Marklof regarding the equidistribution of certain sparse collections of points on expanding horospheres. These collections are obtained by intersecting the expanded horosphere with a certain manifold of complementary d imension and turns out to be of arithmetic nature. This equidistribution result is then used along the lines suggested by Marklof to give an analogue of a result of W. Schmidt regarding the distribution of shapes of lattices orthogonal to integer vectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا