ﻻ يوجد ملخص باللغة العربية
Counting periodic orbits of endomorphisms on the 2-torus is considered, with special focus on the relation between global and local aspects and between the dynamical zeta function on the torus and its analogue on finite lattices. The situation on the lattices, up to local conjugacy, is completely determined by the determinant, the trace and a third invariant of the matrix defining the toral endomorphism.
Motivated by the recent works on the stability of symmetric periodic orbits of the elliptic Sitnikov problem, for time-periodic Newtonian equations with symmetries, we will study symmetric periodic solutions which are emanated from nonconstant period
We prove a criterion for Benjamini-Schramm convergence of periodic orbits of Lie groups. This general observation is then applied to homogeneous spaces and the space of translation surfaces.
It is proved that a certain type of monotone flow has a global period provided periodic points are dense.
We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS
We reconsider the classical problem of the continuation of degenerate periodic orbits in Hamiltonian systems. In particular we focus on periodic orbits that arise from the breaking of a completely resonant maximal torus. We here propose a suitable no