ترغب بنشر مسار تعليمي؟ اضغط هنا

Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces

115   0   0.0 ( 0 )
 نشر من قبل Enrico Calzavarini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of particles in turbulence when the particle-size is larger than the dissipative scale of the carrier flow is studied. Recent experiments have highlighted signatures of particles finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times -at increasing the particles size- and an independence of the probability density function of the acceleration once normalized to their variance. These effects are not captured by point particle models. By means of a detailed comparison between numerical simulations and experimental data, we show that a more accurate model is obtained once Faxen corrections are included.



قيم البحث

اقرأ أيضاً

We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi th the drag for bubbly flows. We find that rigid spheres hardly change the drag of the system beyond the trivial viscosity effects caused by replacing the working fluid with particles. The size of the particle has a marginal effect on the drag, with smaller diameter particles showing only slightly lower drag. Increasing the particle volume fraction shows a net drag increase as the effective viscosity of the fluid is also increased. The increase in drag for increasing particle volume fraction is corroborated by performing laser Doppler anemometry where we find that the turbulent velocity fluctuations also increase with increasing volume fraction. In contrast with rigid spheres, for bubbles the effective drag reduction also increases with increasing Reynolds number. Bubbles are also much more effective in reducing the overall drag.
77 - Akshay Bhatnagar 2020
We study the joint probability distributions of separation, $R$, and radial component of the relative velocity, $V_{rm R}$, of particles settling under gravity in a turbulent flow. We also obtain the moments of these distributions and analyze their a nisotropy using spherical harmonics. We find that the qualitative nature of the joint distributions remains the same as no gravity case. Distributions of $V_{rm R}$ for fixed values of $R$ show a power-law dependence on $V_{rm R}$ for a range of $V_{rm R}$, exponent of the power-law depends on the gravity. Effects of gravity are also manifested in the following ways: (a) moments of the distributions are anisotropic; the degree of anisotropy depends on particles Stokes number, but does not depend on $R$ for small values of $R$. (b) mean velocity of collision between two particles is decreased for particles having equal Stokes numbers but increased for particles having different Stokes numbers. For the later, collision velocity is set by the difference in their settling velocities.
We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, $D_2$. It was argued [1, 2] that the scale invariant part of the distribution has two asymptotic regimes: (1) $|V_R| ll R$ where the distribution depends solely on $R$; and (2) $|V_R| gg R$ where the distribution is a function of $|V_R|$ alone. The probability distributions in these two regimes are matched along a straight line $|V_R| = z^ast R$. Our simulations confirm that this is indeed correct. We further obtain $D_2$ and $z^ast$ as a function of the Stokes number, ${rm St}$. The former depends non-monotonically on ${rm St}$ with a minimum at about ${rm St} approx 0.7$ and the latter has only a weak dependence on ${rm St}$.
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are compa rable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-fords). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.
140 - Faranggis Bagheri 2010
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF ) of finite-time Lyapunov exponents and from them the corresponding Cramers function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number $Wi <1$) and the FENE model. We use the location of the minima of the Cramers function to define the Weissenberg number precisely such that we observe coil-stretch transition at $Wiapprox1$. We find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon and Lebedev [Phys. Rev. Lett., 84, 4765 (2000).] for linear polymers (Oldroyd-B model) with $Wi<1$ and by Chertkov [Phys. Rev. Lett., 84, 4761 (2000).] for nonlinear FENE-P model of polymers. For $Wi>1$ (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the stream-wise direction of the flow but near the centerline the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا