ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy on modules over the group ring of a sofic group

111   0   0.0 ( 0 )
 نشر من قبل Bingbing Liang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Bingbing Liang




اسأل ChatGPT حول البحث

We partially generalize Peters formula on modules over the group ring ${mathbb F} Gamma$ for a given finite field ${mathbb F}$ and a sofic group $Gamma$. It is also discussed that how the values of entropy are related to the zero divisor conjecture.



قيم البحث

اقرأ أيضاً

For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exis ts a f.g. R-submodule D of A, which has a minimal generating subset, consisting exactly of r elements. Let FG be the group algebra of a finite group G over a field F. In the present paper modules over the algebra FG having finite generator property are described.
We construct a new class of algebras resembling enveloping algebras and generalizing orthogonal Gelfand-Zeitlin algebras and rational Galois algebras studied by [EMV,FuZ,RZ,Har]. The algebras are defined via a geometric realization in terms of sheave s of functions invariant under an action of a finite group. A natural class of modules over these algebra can be constructed via a similar geometric realization. In the special case of a local reflection group, these modules are shown to have an explicit basis, generalizing similar results for orthogonal Gelfand-Zeitlin algebras from [EMV] and for rational Galois algebras from [FuZ]. We also construct a family of canonical simple Harish-Chandra modules and give sufficient conditions for simplicity of some modules.
139 - Aditi Kar , Nikolay Nikolov 2014
We describe elementary examples of finitely presented sofic groups which are not residually amenable (and thus not initially subamenable or LEA, for short). We ask if an amalgam of two amenable groups over a finite subgroup is residually amenable and answer this positively for some special cases, including countable locally finite groups, residually nilpotent groups and others.
422 - Dou Dou , Ruifeng Zhang 2017
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lne r sequences; the Hausdorff dimension of an amenable subshift (for certain metric associated to some F{o}lner sequence) equals its topological entropy. This answers questions by Zheng and Chen (Israel Journal of Mathematics 212 (2016), 895-911) and Simpson (Theory Comput. Syst. 56 (2015), 527-543).
A commutative ring R has finite rank r, if each ideal of R is generated at most by r elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by r elements. Such rings are closely related to Prufer domains. In the present paper we investigate some analogs of these concepts for modules over group rings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا