ﻻ يوجد ملخص باللغة العربية
Optical harmonic generation occurs when high intensity light ($>10^{10}$W/m$^{2}$) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong-light matter interaction and electrically and broadband tunable third order nonlinear susceptibility. Here we show that the third harmonic generation efficiency in graphene can be tuned by over two orders of magnitude by controlling the Fermi energy and the incident photon energy. This is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from multi-photon transitions. Thanks to the linear dispersion of the massless Dirac fermions, ultrabroadband electrical tunability can be achieved, paving the way to electrically-tuneable broadband frequency converters for applications in optical communications and signal processing.
Hot electrons dominate the ultrafast ($sim$fs-ps) optical and electronic properties of metals and semiconductors and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third harmonic
The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling an
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol
Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics