ﻻ يوجد ملخص باللغة العربية
Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for a development of ultrafast valleytronics in graphene.
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol
Degenerate minima in momentum space - valleys - provide an additional degree of freedom that can be used for information transport and storage. Notably, such minima naturally exist in the band structure of transition metal dichalcogenides (TMDs). Whe
An optical Second-Harmonic Generation (SHG) allows to probe various structural and symmetry-related properties of materials, since it is sensitive to the inversion symmetry breaking in the system. Here, we investigate the SHG response from a single l
The electron transport of different conical valleys is investigated in graphene with extended line-defects. Intriguingly, the electron with a definite incident angle can be completely modulated into one conical valley by a resonator which consists of
The second-order nonlinear optical susceptibility $Pi^{(2)}$ for second harmonic generation is calculated for gapped graphene. The linear and second-order nonlinear plasmon excitations are investigated in context of second harmonic generation (SHG).