ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity

45   0   0.0 ( 0 )
 نشر من قبل Natalio Mingo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate an ab-initio predictive approach to computing the thermal conductivity ($kappa$) of InAs/GaAs superlattices (SLs) of varying period, thickness, and composition. Our new experimental results illustrate how this method can yield good agreement with experiment when realistic composition profiles are used as inputs for the theoretical model. Due to intrinsic limitations to the InAs thickness than can be grown, bulk-like SLs show limited sensitivity to the details of their composition profile, but the situation changes significantly when finite-thickness effects are considered. If In segregation could be minimized during the growth process, SLs with significantly higher $kappa$ than that of the random alloy with the same composition would be obtained, with the potential to improve heat dissipation in InAs/GaAs-based devices.



قيم البحث

اقرأ أيضاً

The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low ther mal conductivity of around 1-8 W/mcdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.
Heterostructures consisting of alternating GaN/AlN epitaxial layers represent the building-blocks of state-of-the-art devices employed for active cooling and energy-saving lightning. Insights into the heat conduction of these structures are essential in the perspective of improving the heat management for prospective applications. Here, the cross-plane (perpendicular to the samples surface) thermal conductivity of GaN/AlN superlattices as a function of the layers thickness is established by employing the $3omega$-method. Moreover, the role of interdiffusion at the interfaces on the phonon scattering is taken into account in the modelling and data treatment. It is found, that the cross-plane thermal conductivity of the epitaxial heterostructures can be driven to values as low as 5.9 W/(m$cdot$K) comparable with those reported for amorphous films, thus opening wide perspectives for optimized heat management in III-nitride-based epitaxial multilayers.
163 - A. A. Balandin , S. Ghosh , W. Bao 2008
We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 48 40 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.
AlN is an ultra-wide bandgap semiconductor which has been developed for applications including power electronics and optoelectronics. Thermal management of these applications is the key for stable device performance and allowing for long lifetimes. A lN, with its potentially high thermal conductivity, can play an important role serving as a dielectric layer, growth substrate, and heat spreader to improve device performance. However, the intrinsic high thermal conductivity of bulk AlN predicted by theoretical calculations has not been experimentally observed because of the difficulty in producing materials with low vacancy and impurity levels, and other associated defect complexes in AlN which can decrease the thermal conductivity. This work reports the growth of thick AlN layers by MOCVD with an air-pocketed AlN layer and the first experimental observation of intrinsic thermal conductivity from 130 K to 480 K that matches density-function-theory calculations for single crystal AlN, producing some of the highest values ever measured. Detailed material characterizations confirm the high quality of these AlN samples with one or two orders of magnitude lower impurity concentrations than seen in commercially available bulk AlN. Measurements of these commercially available bulk AlN substrates from 80 K to 480 K demonstrated a lower thermal conductivity, as expected. A theoretical thermal model is built to interpret the measured temperature dependent thermal conductivity. Our work demonstrates that it is possible to obtain theoretically high values of thermal conductivity in AlN and such films may impact the thermal management and reliability of future electronic and optoelectronics devices.
192 - G. Bester , D. Reuter , L. He 2007
We present experimental magnetotunneling results and atomistic pseudopotential calculations of quasiparticle electron and hole wave functions of self-assembled InAs/GaAs quantum dots. The combination of a predictive theory along with the experimental results allows us to gain direct insight into the quantum states. We monitor the effects of (i) correlations, (ii) atomistic symmetry and (iii) piezoelectricity on the confined carriers and (iv) observe a peculiar charging sequence of holes that violates the Aufbau principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا