ﻻ يوجد ملخص باللغة العربية
We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its integer negation. That is, we can (nondeterministically choose) a hyperplane a x geq b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x geq b, the points satisfying a x leq b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity.
The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiability algorithms, and average-case hardness over this distribution
It is well known that any graph admits a crossing-free straight-line drawing in $mathbb{R}^3$ and that any planar graph admits the same even in $mathbb{R}^2$. For a graph $G$ and $d in {2,3}$, let $rho^1_d(G)$ denote the minimum number of lines in $m
In their seminal work, Danzer (1956, 1986) and Stach{o} (1981) established that every set of pairwise intersecting disks in the plane can be stabbed by four points. However, both these proofs are non-constructive, at least in the sense that they do n
Let $P subseteq mathbb{R}^2$ be a set of points and $T$ be a spanning tree of $P$. The emph{stabbing number} of $T$ is the maximum number of intersections any line in the plane determines with the edges of $T$. The emph{tree stabbing number} of $P$ i
It is known that for every dimension $dge 2$ and every $k<d$ there exists a constant $c_{d,k}>0$ such that for every $n$-point set $Xsubset mathbb R^d$ there exists a $k$-flat that intersects at least $c_{d,k} n^{d+1-k} - o(n^{d+1-k})$ of the $(d-k)$