ﻻ يوجد ملخص باللغة العربية
Let $P subseteq mathbb{R}^2$ be a set of points and $T$ be a spanning tree of $P$. The emph{stabbing number} of $T$ is the maximum number of intersections any line in the plane determines with the edges of $T$. The emph{tree stabbing number} of $P$ is the minimum stabbing number of any spanning tree of $P$. We prove that the tree stabbing number is not a monotone parameter, i.e., there exist point sets $P subsetneq P$ such that treestab{$P$} $>$ treestab{$P$}, answering a question by Eppstein cite[Open Problem~17.5]{eppstein_2018}.
We describe a family of graphs with queue-number at most 4 but unbounded stack-number. This resolves open problems of Heath, Leighton and Rosenberg (1992) and Blankenship and Oporowski (1999).
The emph{segment number} of a planar graph is the smallest number of line segments whose union represents a crossing-free straight-line drawing of the given graph in the plane. The segment number is a measure for the visual complexity of a drawing; i
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of
We show that determining the crossing number of a link is NP-hard. For some weaker notions of link equivalence, we also show NP-completeness.
In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from the