ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution resonant inelastic EUV scattering from orbital excitations in a Heisenberg antiferromagnet

73   0   0.0 ( 0 )
 نشر من قبل Marco Malvestuto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the high resolution resonant inelastic EUV scattering study of quantum Heisenberg antiferromagnet KCoF3. By tuning the EUV photon energy to cobalt M23 edge, a complete set of low energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the RIXS spectral lineshape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material.



قيم البحث

اقرأ أيضاً

151 - T. Nomura , Y. Harada , H. Niwa 2016
Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO$_{0.7}$ using resonant inelastic X-ray scattering (RIXS) at the Fe-$L_3$ edge. Characteristic RIXS features are clearly observed a round 0.5, 1-1.5 and 2-3 eV energy losses. These excitations are analyzed microscopically with theoretical calculations using a 22-orbital model derived from first-principles electronic structure calculation. Based on the agreement with the experiment, the RIXS features are assigned to Fe-$d$ orbital excitations which, at low energies, are accompanied by spin flipping and dominated by Fe $d_{yz}$ and $d_{xz}$ orbital characters. Furthermore, our calculations suggest dispersive momentum dependence of the RIXS excitations below 0.5 eV, and predict remarkable splitting and merging of the lower-energy excitations in momentum space. Those excitations, which were not observed in the present experiment, highlight the potential of RIXS with an improved energy resolution to unravel new details of the electronic structure of the iron-based superconductors.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of orbital excitations in KCuF3 . By performing the polarization analysis of the scattered photons, we disclose that the excitation between the eg orbitals and the excitations fro m t2g to eg exhibit distinct polarization dependence. The polarization dependence of the respective excitations is interpreted based on a phenomenological consideration of the symmetry of the RIXS process that yields a necessary condition for observing the excitations. In addition, we show that the orbital excitations are dispersionless within our experimental resolution.
High resolution resonant inelastic x-ray scattering (RIXS) has proven particularly effective in the determination of crystal field and spin excitations in cuprates. Its strength lies in the large Cu $L_{3}$ resonance and in the fact that the scatteri ng cross section follows quite closely the single-ion model predictions, both in the insulating parent compounds and in the superconducting doped materials. However, the spectra become increasingly broader with (hole) doping, hence resolving and assigning spectral features has proven challenging even with the highest energy resolution experimentally achievable. Here we have overcome this limitation by measuring the complete polarization dependence of the RIXS spectra as function of momentum transfer and doping in thin films of NdBa$_{2}$Cu$_{3}$O$_{7-delta}$. Besides confirming the previous assignment of $dd$ and spin excitations (magnon, bimagnon) in the antiferromagnetic insulating parent compound, we unequivocally single out the actual spin-flip contribution at all dopings. We also demonstrate that the softening of $dd$ excitations is mainly attributed to the shift of the $xy$ peak to lower energy loss. These results provide a definitive assessment of the RIXS spectra of cuprates and demonstrate that RIXS measurements with full polarization control are practically feasible and highly informative.
267 - T. Haku , M. Soda , M. Sera 2015
Inelastic neutron scattering measurement is performed on a breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11. The observed dispersionless excitations are explained by a crystalline electric field (CEF) Hamiltonian of Kramers ion Yb3+ of which the loc al symmetry exhibits C3v point group symmetry. The magnetic susceptibility previously reported is consistently reproduced by the energy scheme of the CEF excitations. The obtained wave functions of the ground state Kramers doublet exhibit the planer-type anisotropy. The result demonstrates that Ba3Yb2Zn5O11 is an experimental realization of breathing pyrochlore antiferromagnet with a pseudospin S = 1/2 having easy-plane anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا