ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization resolved Cu $L_3$-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa$_{2}$Cu$_{3}$O$_{7-delta}$

117   0   0.0 ( 0 )
 نشر من قبل Roberto Fumagalli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution resonant inelastic x-ray scattering (RIXS) has proven particularly effective in the determination of crystal field and spin excitations in cuprates. Its strength lies in the large Cu $L_{3}$ resonance and in the fact that the scattering cross section follows quite closely the single-ion model predictions, both in the insulating parent compounds and in the superconducting doped materials. However, the spectra become increasingly broader with (hole) doping, hence resolving and assigning spectral features has proven challenging even with the highest energy resolution experimentally achievable. Here we have overcome this limitation by measuring the complete polarization dependence of the RIXS spectra as function of momentum transfer and doping in thin films of NdBa$_{2}$Cu$_{3}$O$_{7-delta}$. Besides confirming the previous assignment of $dd$ and spin excitations (magnon, bimagnon) in the antiferromagnetic insulating parent compound, we unequivocally single out the actual spin-flip contribution at all dopings. We also demonstrate that the softening of $dd$ excitations is mainly attributed to the shift of the $xy$ peak to lower energy loss. These results provide a definitive assessment of the RIXS spectra of cuprates and demonstrate that RIXS measurements with full polarization control are practically feasible and highly informative.



قيم البحث

اقرأ أيضاً

We measured high resolution Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS) of the undoped cuprates La$_2$CuO$_4$, Sr$_2$CuO$_2$Cl$_2$, CaCuO$_2$ and NdBa$_2$Cu$_3$O$_6$. The dominant spectral features were assigned to $dd$ excitations and w e extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used them to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3$d$ states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of $dd$ excitation energies carries important consequences for the physics of high $T_c$ superconductors. On one hand, having found that the minimum energy of orbital excitation is always $geq 1.4$ eV, i.e., well above the mid-infrared spectral range, leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of $dd$ excitations on the superconducting gap in cuprates.
We report here the results of scanning tunneling spectroscopic experiments performed on hole doped NdBa$_2$Cu$_3$O$_{7-delta}$ single crystals of $T_c$ values of 76 K, 93.5 K and 95.5 K. The energy gaps are observed to be increasing with decreasing $ T_c$ values. The coherence peaks are asymmetric with the peaks at the filled states being larger than those at the empty ones. The asymmetry increases with decreasing $T_c$. The observed asymmetry and its $T_c$ dependence can be explained by considering the Mott insulating nature of the material at the undoped state.
74 - Y. Itoh , T. Machi , A. Yamamoto 2017
We estimated the ratios of $^{63}$Cu hyperfine coupling constants in the double-layer high-$T_mathrm{c}$ superconductor HgBa$_2$CaCu$_2$O$_{6+delta}$ from the anisotropies in Cu nuclear spin-lattice relaxation rates and spin Knight shifts to study th e nature of the ultraslow fluctuations causing the $T_2$ anomaly in the Cu nuclear spin-echo decay. The ultraslow fluctuations may come from uniform magnetic fluctuations spread around the wave vector $q$ = 0, otherwise the electric origins.
388 - F. Vernay , B. Moritz , I. Elfimov 2007
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copp er 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا