ﻻ يوجد ملخص باللغة العربية
We demonstrate that small but finite ferroelectric polarization ($sim$0.01 $mu$C/cm$^2$) emerges in orthorhombic LuFeO$_3$ ($Pnma$) at $T_N$ ($sim$600 K) because of commensurate (k = 0) and collinear magnetic structure. The synchrotron x-ray and neutron diffraction data suggest that the polarization could originate from enhanced bond covalency together with subtle contribution from lattice. The theoretical calculations indicate enhancement of bond covalency as well as the possibility of structural transition to the polar $Pna2_1$ phase below $T_N$. The $Pna2_1$ phase, in fact, is found to be energetically favorable below $T_N$ in orthorhombic LuFeO$_3$ ($albeit$ with very small energy difference) than in isostructural and nonferroelectric LaFeO$_3$ or NdFeO$_3$. Application of electric field induces finite piezostriction in LuFeO$_3$ via electrostriction resulting in clear domain contrast images in piezoresponse force microscopy.
The origin of electromagnon excitations in cycloidal textit{R}MnO$_3$ is explained in terms of the Heisenberg coupling between spins despite the fact that the static polarization arises from the much weaker Dzyaloshinskii-Moriya (DM) exchange interac
The magnetic structures which endow TbMnO$_3$ with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions
We have performed ab initio calculations within the LDA+U method in the multilayered system (LaMnO$_3$)$_{2n}$ / (SrMnO$_3$)$_n$. Our results suggest a charge-ordered state that alternates Mn$^{3+}$ and Mn$^{4+}$ cations in a checkerboard in-plane pa
This work shows an unconventional route for spin-driven ferroelectricity originating from a metastable magnetic field-induced canting of chromium sublattice in the presence of gadolinium moments in GdCrTiO5 at low temperatures. Compared to the isostr
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition usin