ﻻ يوجد ملخص باللغة العربية
We present an efficient exact diagonalization scheme for the extended dynamical mean-field theory and apply it to the extended Hubbard model on the square lattice with nonlocal charge-charge interactions. Our solver reproduces the phase diagram of this approximation with good accuracy. Details on the numerical treatment of the large Hilbert space of the auxiliary Holstein-Anderson impurity problem are provided. Benchmarks with a numerically exact strong-coupling continuous-time quantum-Monte Carlo solver show better convergence behavior of the exact diagonalization in the deep insulator. Special attention is given to possible effects due to the discretization of the bosonic bath. We discuss the quality of real axis spectra and address the question of screening in the Mott insulator within extended dynamical mean-field theory.
We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a f
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability
We compute the spectral functions for the two-site dynamical cluster theory and for the two-orbital dynamical mean-field theory in the density-matrix renormalization group (DMRG) framework using Chebyshev expansions represented with matrix product st
We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and obtains real-frequency information in a final re
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed m