ﻻ يوجد ملخص باللغة العربية
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed mapping of this impurity problem from the Keldysh time contour onto a time-dependent single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to use wave function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration time-dependent Hartree (MCTDH) method and its multi-layer extensions. We find that MCTDH outperforms exact diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of the self-consistent two-time impurity Greens function within the MCTDH second quantization representation.
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability
We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and obtains real-frequency information in a final re
We compute the spectral functions for the two-site dynamical cluster theory and for the two-orbital dynamical mean-field theory in the density-matrix renormalization group (DMRG) framework using Chebyshev expansions represented with matrix product st
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for th
We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a f