ﻻ يوجد ملخص باللغة العربية
We describe the POLAMI program for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30m telescope at 3.5 and 1.3mm. The program started in October 2006 and accumulated, until August 2014, 2300 observations at 3.5mm, achieving a median time sampling interval of 22 days for the sample of 37 sources. This first paper explains the source selection, mostly blazars, the observing strategy and data calibration, and gives the details of the instrumental polarisation corrections. The sensitivity (1sigma) reached at 3.5mm is 0.5% (linear polarisation degree), 4.7 deg. (polarisation angle), and 0.23% (circular polarisation), while the corresponding values at 1.3mm are 1.7%, 9.9 deg., and 0.72%, respectively. The data quality is demonstrated by the time sequences of our calibrators Mars and Uranus. For the quasar 3C286, widely used as a linear polarisation calibrator, we give improved estimates of its linear polarisation, and show for the first time occasional detections of its weak circular polarisation, which suggests a small level of variability of the source at millimeter wavelengths.
We analyse the circular polarisation data accumulated in the first 7 years of the POLAMI project introduced in an accompanying paper (Agudo et al.). In the 3mm wavelength band, we acquired more than 2600 observations, and all but one of our 37 sample
We report on the first results of the POLAMI program, a simultaneous 3.5 and 1.3mm full-Stokes-polarisation monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30m Telescope. Through a systematic sta
Active Galactic Nuclei are the dominant sources of gamma rays outside our Galaxy and also candidates for being the source of ultra-high energy cosmic rays. In addition to being emitters of broad-band non-thermal radiation throughout the electromagnet
Outflows from active galactic nuclei (AGN) are one of the fundamental mechanisms by which the central supermassive black hole interacts with its host galaxy. Detected in $ge 50%$ of nearby AGN, these outflows have been found to carry kinetic energy t
Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and