ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionized outflows from active galactic nuclei as the essential elements of feedback

84   0   0.0 ( 0 )
 نشر من قبل Sibasish Laha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Outflows from active galactic nuclei (AGN) are one of the fundamental mechanisms by which the central supermassive black hole interacts with its host galaxy. Detected in $ge 50%$ of nearby AGN, these outflows have been found to carry kinetic energy that is a significant fraction of AGN power, and thereby give negative feedback to their host galaxies. To understand the physical processes that regulate them, it is important to have a robust estimate of their physical and dynamical parameters. In this review we summarize our current understanding on the physics of the ionized outflows detected in absorption in the UV and X-ray wavelength bands. We discuss the most relevant observations and our current knowledge and uncertainties in the measurements of the outflow parameters. We also discuss their origin and acceleration mechanisms. The commissioning and concept studies of large telescope missions with high resolution spectrographs in UV/optical and X-rays along with rapid advancements in simulations offer great promise for discoveries in this field over the next decade.



قيم البحث

اقرأ أيضاً

The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (A GN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
184 - Pu Du , Jian-Min Wang , Chen Hu 2013
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad and narrow line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of AGNs. From the archival databases of the International Ultraviolet Explorer, the Hubble Space Telescope and the Sloan Digital Sky Survey, we have assembled the largest sample available of AGNs which have adequate spectra in both the optical and ultraviolet bands to measure the narrow line ratio [N II]/H{alpha} and also, in the same objects, the broad-line N V/C IV ratio. These permit the measurement of the metallicities in the NLRs and BLRs in the same objects. We find that neither the BLR nor the NLR metallicity correlate with black hole masses or Eddington ratios, but there is a strong correlation between NLR and BLR metallicities. This metallicity correlation implies that outflows from BLRs carry metal-rich gas to NLRs at characteristic radial distances of ~ 1.0 kiloparsec. This chemical connection provides evidence for a kinetic feedback of the outflows to their hosts. Metals transported into the NLR enhance the cooling of the ISM in this region, leading to local star formation after the AGNs turn to narrow line LINERs. This post-AGN star formation is predicted to be observable as an excess continuum emission from the host galaxies in the near infrared and ultraviolet, which needs to be further explored.
The highly energetic outflows from Active Galactic Nuclei detected in X-rays are one of the most powerful mechanisms by which the central supermassive black hole (SMBH) interacts with the host galaxy. The last two decades of high resolution X-ray spe ctroscopy with XMM and Chandra have improved our understanding of the nature of these outflowing ionized absorbers and we are now poised to take the next giant leap with higher spectral resolution and higher throughput observatories to understand the physics and impact of these outflows on the host galaxy gas. The future studies on X-ray outflows not only have the potential to unravel some of the currently outstanding puzzles in astronomy, such as the physical basis behind the MBH$-sigma$ relation, the cooling flow problem in intra-cluster medium (ICM), and the evolution of the quasar luminosity function across cosmic timescales, but also provide rare insights into the dynamics and nature of matter in the immediate vicinity of the SMBH. Higher spectral resolution ($le 0.5$ eV at $1$ keV) observations will be required to identify individual absorption lines and study the asymmetries and shifts in the line profiles revealing important information about outflow structures and their impact. Higher effective area ($ge 1000 rm ,cm^{2}$) will be required to study the outflows in distant quasars, particularly at the quasar peak era (redshift $1le zle 3$) when the AGN population was the brightest. Thus, it is imperative that we develop next generation X-ray telescopes with high spectral resolution and high throughput for unveiling the properties and impact of highly energetic X-ray outflows. A simultaneous high resolution UV + X-ray mission will encompass the crucial AGN ionizing continuum, and also characterize the simultaneous detections of UV and X-ray outflows, which map different spatial scales along the line of sight.
We analyse the circular polarisation data accumulated in the first 7 years of the POLAMI project introduced in an accompanying paper (Agudo et al.). In the 3mm wavelength band, we acquired more than 2600 observations, and all but one of our 37 sample sources were detected, most of them several times. For most sources, the observed distribution of the degree of circular polarisation is broader than that of unpolarised calibrators, indicating that weak (<0.5%) circular polarisation is present most of the time. Our detection rate and the maximum degree of polarisation found, 2.0%, are comparable to previous surveys, all made at much longer wavelengths. We argue that the process generating circular polarisation must not be strongly wavelength dependent, and we propose that the widespread presence of circular polarisation in our short wavelength sample dominated by blazars is mostly due to Faraday conversion of the linearly polarised synchrotron radiation in the helical magnetic field of the jet. Circular polarisation is variable, most notably on time scales comparable to or shorter than our median sampling interval <1 month. Longer time scales of about one year are occasionally detected, but severely limited by the weakness of the signal. At variance with some longer wavelength investigations we find that the sign of circular polarisation changes in most sources, while only 7 sources, including 3 already known, have a strong preference for one sign. The degrees of circular and linear polarisation do not show any systematic correlation. We do find however one particular event where the two polarisation degrees vary in synchronism during a time span of 0.9 years. The paper also describes a novel method for calibrating the sign of circular polarisation observations.
Disks of gas accreting onto supermassive black holes are thought to power active galactic nuclei (AGN). Stars may form in gravitationally unstable regions of these disks, or may be captured from nuclear star clusters. Because of the dense gas environ ment, the evolution of such embedded stars can diverge dramatically from those in the interstellar medium. This work extends previous studies of stellar evolution in AGN disks by exploring a variety of ways that accretion onto stars in AGN disks may differ from Bondi accretion. We find that tidal effects from the supermassive black hole significantly alter the evolution of stars in AGN disks, and that our results do not depend critically on assumptions about radiative feedback on the accretion stream. Thus, in addition to depending on $rho/c_s^3$, the fate of stars in AGN disks depends sensitively on the distance to and mass of the supermassive black hole. This affects where in the disk stellar explosions occur, where compact remnants form and potentially merge to produce gravitational waves, and where different types of chemical enrichment take place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا