ﻻ يوجد ملخص باللغة العربية
We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming Local Thermodynamic Equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and eleven metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters we obtain excellent agreement among different Cu I lines. The eleven metal-poor stars have iron abundances in the range -4.2 <= [Fe/H] <= -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample it prompts for a revision of the Galactic evolution of Cu.
Based on the medium-high resolution (R~ 20,000), modest signal-to-noise ratio (S/N > 70) FLAMES-GIRAFFE spectra, we investigated the copper abundances of 129 red giant branch stars in the Galactic bulge with [Fe/H] from -1.14 to 0.46 dex. The copper
The copper abundances of 29 metal-poor stars are determined based on the high resolution, high signal-to-noise ratio spectra from the UVES spectragraph at the ESO VLT telescope. Our sample consists of the stars of the Galactic halo, thick- and thin-d
The Milky Way bulge is an important tracer of the early formation and chemical enrichment of the Galaxy. The abundances of different iron-peak elements in field bulge stars can give information on the nucleosynthesis processes that took place in the
Understanding the evolution of carbon and iron in the Milky Ways halo is of importance because these two elements play crucial roles constraining star formation, Galactic assembly, and chemical evolution in the early Universe. Here, we explore the sp
The rotational evolution of cool dwarfs is poorly constrained after around 1-2 Gyr due to a lack of precise ages and rotation periods for old main-sequence stars. In this work we use velocity dispersion as an age proxy to reveal the temperature-depen