ﻻ يوجد ملخص باللغة العربية
Understanding the evolution of carbon and iron in the Milky Ways halo is of importance because these two elements play crucial roles constraining star formation, Galactic assembly, and chemical evolution in the early Universe. Here, we explore the spatial distributions of carbonicity, [C/Fe], and metallicity, [Fe/H], of the halo system based on medium-resolution ($R sim$ 1,300) spectroscopy of $sim$58,000 stars in the Southern Hemisphere from the AAOmega Evolution of Galactic Structure (AEGIS) survey. The AEGIS carbonicity map exhibits a positive gradient with distance, as similarly found for the Sloan Digital Sky Survey (SDSS) carbonicity map of Lee et al. The metallicity map confirms that [Fe/H] decreases with distance, from the inner halo to the outer halo. We also explore the formation and chemical-evolution history of the halo by considering the populations of carbon-enhanced metal-poor (CEMP) stars present in the AEGIS sample. The cumulative and differential frequencies of CEMP-no stars (as classified by their characteristically lower levels of absolute carbon abundance, $A$(C) $leq$ 7.1 for sub-giants and giants) increases with decreasing metallicity, and is textit{substantially higher than previous determinations} for CEMP stars as a whole. In contrast, that of CEMP-$s$ stars (with higher $A$(C)), remains almost flat, at a value $sim$10%, in the range $-,4.0 lesssim$ [Fe/H] $lesssim-$2.0. The distinctly different behaviors of the CEMP-no and CEMP-$s$ stars relieve the tension with population-synthesis models assuming a binary mass-transfer origin, which previously struggled to account for the higher reported frequencies of CEMP stars, taken as a whole, at low metallicity.
The new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. T
We present Spitzer IRS spectra of four carbon stars located in the Galactic Halo and the thick disc. The spectra display typical features of carbon stars with SiC dust emission and C$_2$H$_2$ molecular absorption. Dust radiative transfer models and i
This paper focuses on carbon that is one of the most abundant elements in the Universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. Even nowadays, the origin of carbon and the relative importance of ma
Due to their volatile nature, when sulfur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment
The galaxy formation process in the $Lambda$-Cold Dark Matter scenario can be constrained from the analysis of stars in the Milky Ways halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Gal