ترغب بنشر مسار تعليمي؟ اضغط هنا

A Radio Relic and a Search for the Central Black Hole in the Abell 2261 Brightest Cluster Galaxy

183   0   0.0 ( 0 )
 نشر من قبل Sarah Burke-Spolaor
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present VLA images and HST/STIS spectra of sources within the center of the brightest cluster galaxy (BCG) in Abell 2261. These observations were obtained to test the hypothesis that its extremely large, flat core reflects the ejection of its supermassive black hole. Spectra of three of the four most luminous knots embedded in the core were taken to test whether one may represent stars bound to a displaced massive black hole. The three knots have radial velocity offsets dV < ~150 km/s from the BCG. Knots 2 and 3 show kinematics, colors, and stellar masses consistent with infalling low-mass galaxies or larger stripped cluster members. Large errors in the stellar velocity dispersion of Knot 1, however, mean that we cannot rule out the hypothesis that it hosts a high-mass black hole. A2261-BCG has a compact, relic radio-source offset by 6.5 kpc (projected) from the optical cores center, but no active radio core that would pinpoint the galaxys central black hole to a tight 10 GHz flux limit <3.6 uJy. Its spectrum and morphology are suggestive of an active galactic nucleus that switched off >48 Myr ago, with an equipartition condition magnetic field of 15 uG. These observations are still consistent with the hypothesis that the nuclear black hole has been ejected from its core, but the critical task of locating the supermassive black hole or demonstrating that A2261-BCG lacks one remains to be done.



قيم البحث

اقرأ أيضاً

We use Chandra X-ray observations to look for evidence of a recoiling black hole from the brightest cluster galaxy in Abell 2261 (A2261-BCG). A2261-BCG is a strong candidate for a recoiling black hole because of its large, flat stellar core, revealed by Hubble Space Telescope imaging observations. We took 100-ksec observations with Chandra and combined it with 35 ksec of archival observations to look for low-level accretion onto a black hole of expected mass $Msim10^{10} M_{scriptscriptstyle odot}$ that could possibly be located in one of four off-center stellar knots near the galaxys center or else in the optical center of the galaxy or in the location of radio emission. We found no X-ray emission arising from a point source in excess of the cluster gas and can place limits on the accretion of any black hole in the central region to a 2-7 keV flux below $4.3 times 10^{-16} mathrm{erg s^{-1} cm^{-2}}$, corresponding to a bolometric Eddington fraction of about $10^{-6}$. Thus there is either no $10^{10} M_{scriptscriptstyle odot}$ black hole in the core of A2261-BCG, or it is accreting at a low level. We also discuss the morphology of the X-ray emitting gas in the cluster and how its asymmetry is consistent with a large dynamic event.
We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio e mission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
134 - M. Jamrozy 2014
In this paper we analyze the peculiar radio structure observed across the central region of the galaxy cluster Abell 585 (z=0.12). In the low-resolution radio maps, this structure appears uniform and diffuse on angular scales of ~3 arcmin, and is see mingly related to the distant (z=2.5) radio quasar B3 0727+409 rather than to the cluster itself. However, after a careful investigation of the unpublished archival radio data with better angular resolution, we resolve the structure into two distinct arcmin-scale features, which resemble typical lobes of cluster radio galaxies with no obvious connection to the background quasar. We support this conclusion by examining the spectral and polarization properties of the features, demonstrating in addition that the analyzed structure can hardly be associated with any sort of a radio mini-halo or relics of the cluster. Yet at the same time we are not able to identify host galaxies of the radio lobes in the available optical and infrared surveys. We consider some speculative explanations for our findings, including gravitational wave recoil kicks of SMBHs responsible for the lobes formation in the process of merging massive ellipticals within the central parts of a rich cluster environment, but we do not reach any robust conclusions regarding the origin of the detected radio features.
150 - Yuanyuan Su 2016
Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from ei ther BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched cool core of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.
Magnetic fields are ubiquitous in galaxy clusters, yet their radial profile, power spectrum, and connection to host cluster properties are poorly known. Merging galaxy clusters hosting diffuse polarized emission in the form of radio relics offer a un ique possibility to study the magnetic fields in these complex systems. In this paper, we investigate the intra-cluster magnetic field in Abell 2345. This cluster hosts two radio relics that we detected in polarization with 1-2 GHz JVLA observations. X-ray XMM-Newton images show a very disturbed morphology. We derived the Rotation Measure (RM) of five polarized sources within $sim$ 1 Mpc from the cluster center applying the RM synthesis. Both, the average RM and the RM dispersion radial profiles probe the presence of intra-cluster magnetic fields. Using the thermal electron density profile derived from X-ray analysis and simulating a 3D magnetic field with fluctuations following a power spectrum derived from magneto-hydrodynamical cosmological simulations, we build mock RM images of the cluster. We constrained the magnetic field profile in the eastern radio relic sector by comparing simulated and observed RM images. We find that, within the framework of our model, the data require a magnetic field scaling with thermal electron density as $B(r)propto n_e(r)$. The best model has a central magnetic field (within a 200 kpc radius) of $2.8pm0.1$ $mu$G. The average magnetic field at the position of the eastern relic is $sim$0.3 $mu$G, a factor 2.7 lower than the equipartition estimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا