ترغب بنشر مسار تعليمي؟ اضغط هنا

The intra-cluster magnetic field in the double relic galaxy cluster Abell 2345

125   0   0.0 ( 0 )
 نشر من قبل Chiara Stuardi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are ubiquitous in galaxy clusters, yet their radial profile, power spectrum, and connection to host cluster properties are poorly known. Merging galaxy clusters hosting diffuse polarized emission in the form of radio relics offer a unique possibility to study the magnetic fields in these complex systems. In this paper, we investigate the intra-cluster magnetic field in Abell 2345. This cluster hosts two radio relics that we detected in polarization with 1-2 GHz JVLA observations. X-ray XMM-Newton images show a very disturbed morphology. We derived the Rotation Measure (RM) of five polarized sources within $sim$ 1 Mpc from the cluster center applying the RM synthesis. Both, the average RM and the RM dispersion radial profiles probe the presence of intra-cluster magnetic fields. Using the thermal electron density profile derived from X-ray analysis and simulating a 3D magnetic field with fluctuations following a power spectrum derived from magneto-hydrodynamical cosmological simulations, we build mock RM images of the cluster. We constrained the magnetic field profile in the eastern radio relic sector by comparing simulated and observed RM images. We find that, within the framework of our model, the data require a magnetic field scaling with thermal electron density as $B(r)propto n_e(r)$. The best model has a central magnetic field (within a 200 kpc radius) of $2.8pm0.1$ $mu$G. The average magnetic field at the position of the eastern relic is $sim$0.3 $mu$G, a factor 2.7 lower than the equipartition estimate.



قيم البحث

اقرأ أيضاً

We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio e mission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
We investigate the star formation rate and its location in the major merger cluster Abell 2465 at $z$ = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the H$alpha$ and infrared dust emission of galaxies in the clus ter were made with an interference filter centred on the redshifted line at a wavelength of 817 nm and utilized data from the WISE satellite 12 $mu$m band. Imaging in the Johnson $U$ and $B$ bands was obtained, and along with SDSS $u$ and $r$ was used to study the blue fraction, which appears enhanced, as a further signatures of star formation in the cluster. Star formation rates were calculated using standard calibrations. The total star formation rate normalized by the cluster mass, $Sigma SFR/M_{cl}$ compared to compilations for other clusters indicate that the components of Abell 2465 lie above the mean $z$ and $M_{cl}$ relations, suggestive that interacting galaxy clusters have enhanced star formation. The projected radial distribution of the star forming galaxies does not follow a NFW profile and is relatively flat indicating that fewer star forming galaxies are in the cluster centre. The morphologies of the H$alpha$ sources within $R_{200}$ for the cluster as a whole indicate that many are disturbed or merging, suggesting that a combination of merging or harassment is working.
55 - F. Govoni , M. Murgia , V. Vacca 2017
We study the intra-cluster magnetic field in the poor galaxy cluster Abell 194 by complementing radio data, at different frequencies, with data in the optical and X-ray bands. We analyze new total intensity and polarization observations of Abell 194 obtained with the Sardinia Radio Telescope (SRT). We use the SRT data in combination with archival Very Large Array observations to derive both the spectral aging and Rotation Measure (RM) images of the radio galaxies 3C40A and 3C40B embedded in Abell 194. The optical analysis indicates that Abell 194 does not show a major and recent cluster merger, but rather agrees with a scenario of accretion of small groups. Under the minimum energy assumption, the lifetimes of synchrotron electrons in 3C40B measured from the spectral break are found to be 157 Myrs. The break frequency image and the electron density profile inferred from the X-ray emission are used in combination with the RM data to constrain the intra-cluster magnetic field power spectrum. By assuming a Kolmogorov power law power spectrum, we find that the RM data in Abell 194 are well described by a magnetic field with a maximum scale of fluctuations of Lambda_max=64 kpc and a central magnetic field strength of <B0>=1.5 microG. Further out, the field decreases with the radius following the gas density to the power of eta=1.1. Comparing Abell 194 with a small sample of galaxy clusters, there is a hint of a trend between central electron densities and magnetic field strengths.
The formation of Low mass X-ray binaries (LMXB) is favored within dense stellar systems such as Globular Clusters (GCs). The connection between LMXB and Globular Clusters has been extensively studied in the literature, but these studies have always b een restricted to the innermost regions of galaxies. We present a study of LMXB in GCs within the central 1.5 deg^2 of the Fornax cluster with the aim of confirming the existence of a population of LMXB in intra-cluster GCs and understand if their properties are related to the host GCs, to the environment or/and to different formation channels.
Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Gia nt Metrewave Radio Telescope band 3 (300-500 MHz) and band 4 (550-850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power-law between 144 MHz and 5.5 GHz with a mean spectral slope $alpha=-1.16pm0.03$. Despite its complex morphology, the subregions of the relic and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming Diffusive Shock Acceleration, we estimate a dominant Mach number of $sim 3.7$ for the shocks that make up the relic. Comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with $alpha$ nearly constant, namely between $-1.13$ and $-1.17$, for Mach numbers $3.5 - 4.0$. The spectral shapes inferred from spatially resolved regions show curvature, we speculate that the relic is inclined along the line-of-sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line-of-sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا