ﻻ يوجد ملخص باللغة العربية
Determine the size of $r$-graphs with given graph parameters is an interesting problem. Chvatal and Hanson (JCTB, 1976) gave a tight upper bound of the size of 2-graphs with restricted maximum degree and matching number; Khare (DM, 2014) studied the same problem for linear $3$-graphs with restricted matching number and maximum degree. In this paper, we give a tight upper bound of the size of $3$-graphs with bounded codegree and matching number.
Let $rge 3$. Given an $r$-graph $H$, the minimum codegree $delta_{r-1}(H)$ is the largest integer $t$ such that every $(r-1)$-subset of $V(H)$ is contained in at least $t$ edges of $H$. Given an $r$-graph $F$, the codegree Turan density $gamma(F)$ is
For all integers $k,d$ such that $k geq 3$ and $k/2leq d leq k-1$, let $n$ be a sufficiently large integer {rm(}which may not be divisible by $k${rm)} and let $sle lfloor n/krfloor-1$. We show that if $H$ is a $k$-uniform hypergraph on $n$ vertices w
There is a remarkable connection between the clique number and the Lagrangian of a 2-graph proved by Motzkin and Straus in 1965. It is useful in practice if similar results hold for hypergraphs. However the obvious generalization of Motzkin and Strau
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
Given a hypergraph $H$, the size-Ramsey number $hat{r}_2(H)$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that in any colouring of the edges of $G$ with two colours there is a monochromatic copy of $