ترغب بنشر مسار تعليمي؟ اضغط هنا

Connection between the clique number and the Lagrangian of $3$-uniform hypergraphs

268   0   0.0 ( 0 )
 نشر من قبل Qingsong Tang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a remarkable connection between the clique number and the Lagrangian of a 2-graph proved by Motzkin and Straus in 1965. It is useful in practice if similar results hold for hypergraphs. However the obvious generalization of Motzkin and Straus result to hypergraphs is false. Frankl and F{u}redi conjectured that the $r$-uniform hypergraph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest Lagrangian of all $r$-uniform hypergraphs with $m$ edges. For $r=2$, Motzkin and Straus theorem confirms this conjecture. For $r=3$, it is shown by Talbot that this conjecture is true when $m$ is in certain ranges. In this paper, we explore the connection between the clique number and Lagrangians for $3$-uniform hypergraphs. As an application of this connection, we confirm that Frankl and F{u}redis conjecture holds for bigger ranges of $m$ when $r$=3. We also obtain two weak



قيم البحث

اقرأ أيضاً

140 - Xinmin Hou , Lei Yu , Jun Gao 2017
Determine the size of $r$-graphs with given graph parameters is an interesting problem. Chvatal and Hanson (JCTB, 1976) gave a tight upper bound of the size of 2-graphs with restricted maximum degree and matching number; Khare (DM, 2014) studied the same problem for linear $3$-graphs with restricted matching number and maximum degree. In this paper, we give a tight upper bound of the size of $3$-graphs with bounded codegree and matching number.
240 - Alexandre Bazin 2018
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
116 - Cunxiang Duan , Ligong Wang 2020
The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radi us (or the signless Laplacian spectral radius) of general hypergraphs in terms of clique number. Moreover, we present a relation between a homogeneous polynomial and the clique number of general hypergraphs. As an application, we finally obtain an upper bound of the spectral radius of general hypergraphs in terms of clique number.
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for t he maximum clique number in graphs. It is useful in practice if similar results hold for hypergraphs. In this paper, we explore evidences that the Lagrangian of a 3-uniform hypergraph is related to the order of its maximum cliques when the number of edges of the hypergraph is in certain range. In particular, we present some results about a conjecture introduced by Y. Peng and C. Zhao (2012) and describe a combinatorial algorithm that can be used to check the validity of the conjecture.
Let K_4^3-2e denote the hypergraph consisting of two triples on four points. For an integer n, let t(n, K_4^3-2e) denote the smallest integer d so that every 3-uniform hypergraph G of order n with minimum pair-degree delta_2(G) geq d contains floor{n /4} vertex-disjoint copies of K_4^3-2e. Kuhn and Osthus proved that t(n, K_4^3-2e) = (1 + o(1))n/4 holds for large integers n. Here, we prove the exact counterpart, that for all sufficiently large integers n divisible by 4, t(n, K_4^3-2e) = n/4 when n/4 is odd, and t(n, K_4^3-2e) = n/4+1 when n/4 is even. A main ingredient in our proof is the recent `absorption technique of Rodl, Rucinski and Szemeredi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا