ترغب بنشر مسار تعليمي؟ اضغط هنا

A Method for Measuring Variations in the Stellar Initial Mass Function

126   0   0.0 ( 0 )
 نشر من قبل Daniela Calzetti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Calzetti




اسأل ChatGPT حول البحث

We present a method for investigating variations in the upper end of the stellar Initial Mass Function (IMF) by probing the production rate of ionizing photons in unresolved, compact star clusters with ages <~10 Myr and with different masses. We test this method by performing a pilot study on the young cluster population in the nearby galaxy NGC5194 (M51a), for which multi-wavelength observations from the Hubble Space Telescope are available. Our results indicate that the proposed method can probe the upper end of the IMF in galaxies located out to at least ~10 Mpc, i.e., a factor ~200 further away than possible by counting individual stars in young compact clusters. Our results for NGC5194 show no obvious dependence of the upper mass end of the IMF on the mass of the star cluster down to ~1000 M_sun, although more extensive analyses involving lower mass clusters and other galaxies are needed to confirm this conclusion.



قيم البحث

اقرأ أيضاً

The initial mass function (IMF) succinctly characterizes a stellar population, provides a statistical measure of the end result of the star-formation process, and informs our under- standing of the structure and dynamical evolution of stellar cluster s, the Milky Way, and other galaxies. Detecting variations in the form of the IMF could provide powerful insights into the processes that govern the formation and evolution of stars, clusters, and galaxies. In this contribution, we review measurements of the IMF in resolved stellar populations, and critically assess the evidence for systematic IMF variations. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal IMF, suggesting no gross systematic variations in the IMF over a range of star formation environments, and much of cosmic time. We conclude by highlighting the complimentary roles that Gaia and the Large Synoptic Survey Telescope will play in future studies of the IMF in Galactic stellar populations.
111 - Nate Bastian 2010
Few topics in astronomy initiate such vigorous discussion as whether or not the initial mass function (IMF) of stars is universal, or instead sensitive to the initial conditions of star formation. The distinction is of critical importance: the IMF in fluences most of the observable properties of stellar populations and galaxies, and detecting variations in the IMF could provide deep insights into the process by which stars form. In this review, we take a critical look at the case for IMF variations, with a view towards whether other explanations are sufficient given the evidence. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal IMF: a power-law of Salpeter index ($Gamma=1.35$) above a few solar masses, and a log normal or shallower power-law ($Gamma sim 0-0.25$) between a few tenths and a few solar masses (ignoring the effects of unresolved binaries). The shape and universality of the IMF at the stellar-substellar boundary is still under investigation and uncertainties remain large, but most observations are consistent with a IMF that declines ($Gamma < -0.5$) well below the hydrogen burning limit. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a universal IMF, suggesting no gross variations in the IMF over much of cosmic time. There are indications of non-standard IMFs in specific local and extragalactic environments, which clearly warrant further study. Nonetheless, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.
We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep HST/ACS imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M_V = -6.2, -5.5), metal-poo r (<[Fe/H]>= -2.4, -2.5) systems that have old stellar populations (> 11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52 - 0.77 Msun, the IMF is best fit by a power-law slope of alpha = 1.2^{+0.4}_{-0.5} for Hercules and alpha = 1.3 +/- 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter IMF (alpha=2.35) at the 5.8-sigma level, and a Kroupa IMF (alpha=2.3 above 0.5 Msun) at 5.4-sigma level. We simultaneously fit for the binary fraction, finding f_binary = 0.47^{+0.16}_{-0.14} for Hercules, and 0.47^{+0.37}_{-0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5 - 0.8 Msun, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
128 - James D. Neill 2010
Supernovae arise from progenitor stars occupying the upper end of the initial mass function. Their extreme brightness allows individual massive stars to be detected at cosmic distances, lending supernovae great potential as tracers of the upper end o f the IMF and its evolution. Exploiting this potential requires progress in many areas of supernova science. These include understanding the progenitor masses that produce various types of supernovae and accurately characterizing the supernova outburst and the environment in which it was produced. I present some preliminary work identifying the environmental conditions that produce the most luminous supernovae, believed to arise from stars with masses greater than 100 M_sun. I illustrate that the presence of these extreme supernovae in small star-forming dwarfs can be used to test our understanding of the upper end of the IMF.
[abridged] Stars are thought to be formed predominantly in clusters. The clusters are formed following a cluster initial mass function (CMF) similar to the stellar initial mass function (IMF). Both the IMF and the CMF favour low-mass objects. The num erous low-mass clusters will lack high mass stars. If the integrated galactic initial mass function originates from stars formed in clusters, the IGIMF could be steeper than the IMF. We investigate how well constrained this steepening is and how it depends on the choice of sampling method and CMF. We compare analytic sampling to several implementations of random sampling of the IMF, and different CMFs. We implement different IGIMFs into GALEV to obtain colours and metallicities for galaxies. Choosing different ways of sampling the IMF results in different IGIMFs. Depending on the lower cluster mass limit and the slope of the cluster mass function, the steepening varies between very strong and negligible. We find the size of the effect is continuous as a function of the power-law slope of the CMF, if the CMF extends to masses smaller than the maximum stellarmass. The number of O-stars detected by GAIA might help in judging on the importance of the IGIMF effect. The impact of different IGIMFs on integrated galaxy photometry is small, within the intrinsic scatter of observed galaxies. Observations of gas fractions and metallicities could rule out at least the most extreme sampling methods. As we still do not understand the details of star formation, one sampling method cannot be favoured over another. Also, the CMF at very low cluster masses is not well constrained observationally. These uncertainties need to be taken into account when using an IGIMF, with severe implications for galaxy evolution models and interpretations of galaxy observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا