ﻻ يوجد ملخص باللغة العربية
Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net torque that makes close-in planets migrate inward or outward depending on their orbital distance. We compare systematically the strength of magnetic and tidal torques for typical observed star-planet systems (T-Tauri & hot Jupiter, M dwarf & Earth-like planet, K star & hot Jupiter) based on state-of-the-art scaling-laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For very close-in planets, we find that both torques can make a planet migrate on a timescale as small as 10 to 100 thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact systems.
In recent years it has been shown that the tidal coupling between extrasolar planets and their stars could be an important mechanism leading to orbital evolution. Both the tides the planet raises on the star and vice versa are important and dissipati
This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for op
Jupiter-mass planets with large semi-major axes ($a > 1.0$ AU) occur at a higher rate around evolved intermediate mass stars. There is a pronounced paucity of close-in ($a < 0.6$ AU), intermediate period ($5 < P < 100$ days), low-mass ($M_{rm planet}
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of
Tidal forces are important for understanding how close binary stars and compact exoplanetary systems form and evolve. However, tides are difficult to model and significant uncertainties exist about the strength of tides. Here, we investigate tidal ci