ﻻ يوجد ملخص باللغة العربية
Tidal forces are important for understanding how close binary stars and compact exoplanetary systems form and evolve. However, tides are difficult to model and significant uncertainties exist about the strength of tides. Here, we investigate tidal circularization in close binaries using a large sample of well-characterised eclipsing systems. We searched TESS photometry from the southern hemisphere for eclipsing binaries. We derive best-fit orbital and stellar parameters by jointly modelling light curves and spectral energy distributions. To determine the eccentricity distribution of eclipsing binaries over a wide range of stellar temperatures ($3,000-50,000,$K) and orbital separations $a/R_1$ ($2-300$), we combine our newly obtained TESS sample with eclipsing binaries observed from the ground and by the Kepler mission. We find a clear dependency of stellar temperature and orbital separation in the eccentricities of close binaries. We compare our observations with predictions of the equilibrium and dynamical tides. We find that while cool binaries agree with the predictions of the equilibrium tide, a large fraction of binaries with temperatures between $6,250,$K and $10,000,$K and orbital separations between $a/R_1 sim 4$ and $10$ are found on circular orbits contrary to the predictions of the dynamical tide. This suggests that some binaries with radiative envelopes may be tidally circularised significantly more efficiently than usually assumed. Our findings on orbital circularization have important implications also in the context of hot Jupiters where tides have been invoked to explain the observed difference in the spin-orbit alignment between hot and cool host stars.
We have identified a quadruple system with two close eclipsing binaries in TESS data. The object is unresolved in Gaia and appears as a single source at parallax 1.08~$pm$0.01 mas. Both binaries have observable primary and secondary eclipses and were
Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binari
Context. Intermediate- to high-mass stars are the least numerous types of stars and they are less well understood than their more numerous low-mass counterparts in terms of their internal physical processes. Modelling the photometric variability of a
ASAS is a long term project to monitor bright variable stars over the whole sky. It has discovered 50,122 variables brighter than V < 14 mag south of declination +28 degrees, and among them 11,099 eclipsing binaries. We present a preliminary analysis
The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine EBs in Upper Scorpius, three of