ﻻ يوجد ملخص باللغة العربية
Let $M_{g, n}$ (respectively, $overline{M_{g, n}}$) be the moduli space of smooth (respectively stable) curves of genus $g$ with $n$ marked points. Over the field of complex numbers, it is a classical problem in algebraic geometry to determine whether or not $M_{g, n}$ (or equivalently, $overline{M_{g, n}}$) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud and G. Farkas assert that $M_{g, n}$ is not unirational for any $n geqslant 0$ if $g geqslant 22$. Moreover, P. Belorousski and A. Logan showed that $M_{g, n}$ is unirational for only finitely many pairs $(g, n)$ with $g geqslant 1$. Finding the precise range of pairs $(g, n)$, where $M_{g, n}$ is rational, stably rational or unirational, is a problem of ongoing interest. In this paper we address the rationality problem for twisted forms of $overline{M_{g, n}}$ defined over an arbitrary field $F$ of characteristic $ eq 2$. We show that all $F$-forms of $overline{M_{g, n}}$ are stably rational for $g = 1$ and $3 leqslant n leqslant 4$, $g = 2$ and $2 leqslant n leqslant 3$, $g = 3$ and $1 leqslant n leqslant 14$, $g = 4$ and $1 leqslant n leqslant 9$, $g = 5$ and $1 leqslant n leqslant 12$.
We study a space of genus $g$ stable, $n$-marked tropical curves with total edge length $1$. Its rational homology is identified both with top-weight cohomology of the complex moduli space $M_{g,n}$ and with the homology of a marked version of Kontse
We prove that Grothendieck-Witt spaces of Poincare categories are, in many cases, group completions of certain moduli spaces of hermitian forms. This, in particular, identifies Karoubis classical hermitian and quadratic K-groups with the genuine Grot
Curves of genus g which admit a map to CP1 with specified ramification profile mu over 0 and nu over infinity define a double ramification cycle DR_g(mu,nu) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of
Rapid developments in genetics and biology have led to phylogenetic methods becoming an important direction in the study of cancer and viral evolution. Although our understanding of gene biology and biochemistry has increased and is increasing at a r
For $4 mid L$ and $g$ large, we calculate the integral Picard groups of the moduli spaces of curves and principally polarized abelian varieties with level $L$ structures. In particular, we determine the divisibility properties of the standard line b