ﻻ يوجد ملخص باللغة العربية
We prove that Grothendieck-Witt spaces of Poincare categories are, in many cases, group completions of certain moduli spaces of hermitian forms. This, in particular, identifies Karoubis classical hermitian and quadratic K-groups with the genuine Grothendieck-Witt groups from our joint work with Calm`es, Dotto, Harpaz, Land, Moi, Nardin and Nikolaus, and thereby completes our solution of several conjectures in hermitian K-theory. The method of proof is abstracted from work of Galatius and Randal-Williams on cobordism categories of manifolds using the identification of the Grothendieck-Witt space of a Poincare category as the homotopy type of the associated cobordism category.
This paper is the first in a series in which we offer a new framework for hermitian K-theory in the realm of stable $infty$-categories. Our perspective yields solutions to a variety of classical problems involving Grothendieck-Witt groups of rings an
We establish a fibre sequence relating the classical Grothendieck-Witt theory of a ring $R$ to the homotopy $mathrm{C}_2$-orbits of its K-theory and Ranickis original (non-periodic) symmetric L-theory. We use this fibre sequence to remove the assumpt
We define Grothendieck-Witt spectra in the setting of Poincare $infty$-categories and show that they fit into an extension with a L- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations
We prove a version of J.P. Mays theorem on the additivity of traces, in symmetric monoidal stable $infty$-categories. Our proof proceeds via a categorification, namely we use the additivity of topological Hochschild homology as an invariant of stable
We prove that exterior powers of (skew-)symmetric bundles induce a $lambda$-ring structure on the ring $GW^0(X) oplus GW^2(X)$, when $X$ is a scheme where $2$ is invertible. Using this structure, we define stable Adams operations on Hermitian $K$-the