ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary stars in the Galactic thick disc

101   0   0.0 ( 0 )
 نشر من قبل Robert Izzard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of asteroseismologically-measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about $1.2{mathrm{M}_{odot}}$. So why do the masses of a sizeable fraction of thick-disc stars exceed $1.3{mathrm{M}_{odot}}$, with some as massive as $2.3{mathrm{M}_{odot}}$ ? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than $1.3{mathrm{M}_{odot}}$. Of these stars, most are single because they are merged binaries. Some stars more massive than $1.3{mathrm{M}_{odot}}$ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than $1.3{mathrm{M}_{odot}}$. This problem is resolved by the use of a logarithmically-flat orbital-period distribution and a large binary fraction.



قيم البحث

اقرأ أيضاً

The thick disc contains stars formed within the first Gyr of Galactic history, and little is known about their planetary systems. The Spitzer MIPS instrument was used to search 11 of the closest of these old low-metal stars for circumstellar debris, as a signpost that bodies at least as large as planetesimals were formed. A total of 22 thick disc stars has now been observed, after including archival data, but dust is not found in any of the systems. The data rule out a high incidence of debris among star systems from early in the Galaxys formation. However, some stars of this very old population do host giant planets, at possibly more than the general incidence among low-metal Sun-like stars. As the Solar System contains gas giants but little cometary dust, the thick disc could host analogue systems that formed many Gyr before the Sun.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
We study how migration affects stars of a galaxy with a thin stellar disc and thicker stellar components. The simulated galaxy has a strong bar and lasting spiral arms. We find that the amplitude of the churning (change in angular momentum) is simila r for thin and thick components, and of limited amplitude, and that stars of all components can be trapped at the corotation of the bar. At the exception of those stars trapped at the corotation, we find that stars that are far from their initial guiding radius are more likely so due to blurring rather than churning effects. We compare the simulation to orbits integration with a fixed gravitational potential rotating at a constant speed. In the latter case, stars trapped at corotation are churned periodically outside and inside the corotation radius, with a zero net average. However, as the bar speed of the simulated galaxy decreases and its corotation radius increases, stars trapped at corotation for several Gyrs can be churned outwards on average. We study the location of extreme migrators (stars experimenting the largest churning) and find that extreme migrators come from regions on the leading side of the effective potential local maxima.
(Abridged) We have used the atmospheric parameters, [alpha/Fe] abundances and radial velocities, determined from the Gaia-ESO Survey GIRAFFE spectra of FGK-type stars (iDR1), to provide a chemo-kinematical characterisation of the disc stellar populat ions. We focuss on a subsample of 1016 stars with high quality parameters, covering the volume |Z|<4.5kpc and R in the range 2-13kpc. We have identified a thin to thick disc separation in the [alpha/Fe] vs [M/H] plane, thanks to the presence of a low-density region in the number density distribution. The thick disc stars seem to lie in progressively thinner layers above the Galactic plane, as metallicity increases and [alpha/Fe] decreases. The thin disc population presents a constant value of the mean distance to the plane at all metallicities. Our data confirm the already known correlations between V_phi and [M/H] for the two discs. For the thick disc sequence, a study of the possible contamination by thin disc stars suggests a gradient up to 64km/s/dex. The distributions of V_phi, V_Z, and orbital parameters are analysed for the chemically separated samples. Concerning the gradients with galactocentric radius, we find for the thin disc a flat behaviour of V_phi, a [M/H] gradient of -0.058dex/kpc and a small positive [alpha/Fe] gradient. For the thick disc, flat gradients in [M/H] and [alpha/Fe] are derived. Our chemo-kinematical analysis suggests a picture in which the thick disc seems to have experienced a settling process, during which its rotation increased progressively, and, possibly, the V_phi dispersion decreased. At [M/H]-0.25dex and [alpha/Fe]0.1dex, the mean characteristics of the thick disc in distance to the Galactic plane, V_phi, V_phi dispersion and eccentricity agree with those of the thin disc stars, suggesting a possible connection between these populations at a certain epoch of the disc evolution.
Swift J1357.2-0933 is one of the shortest orbital period black hole X-ray transients (BHTs). It exhibited deep optical dips together with an extremely broad H$alpha$ line during outburst. We present 10.4-m GTC time-resolved spectroscopy during quiesc ence searching for donor star absorption features. The large contribution of the accretion flow to the total luminosity prevents the direct detection of the companion. Nevertheless, we constrain the non-stellar contribution to be larger than $sim 80%$ of the total optical light, which sets new lower limits to the distance ($d > 2.29, rm{kpc}$) and the height over the Galactic plane ($z>1.75, rm{kpc}$). This places the system in the galactic thick disc. We measure a modulation in the centroid of the H$alpha$ line with a period of $P=0.11pm0.04, rm{d}$ which, combined with the recently presented FWHM-$K_2$ correlation, results in a massive black hole ($M_1>9.3 , rm{M_odot}$) and a $sim$ M2V companion star ($M_2sim 0.4, rm{M_odot}$). We also present further evidence supporting a very high orbital inclination ($igtrsim 80^circ$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا