ﻻ يوجد ملخص باللغة العربية
Swift J1357.2-0933 is one of the shortest orbital period black hole X-ray transients (BHTs). It exhibited deep optical dips together with an extremely broad H$alpha$ line during outburst. We present 10.4-m GTC time-resolved spectroscopy during quiescence searching for donor star absorption features. The large contribution of the accretion flow to the total luminosity prevents the direct detection of the companion. Nevertheless, we constrain the non-stellar contribution to be larger than $sim 80%$ of the total optical light, which sets new lower limits to the distance ($d > 2.29, rm{kpc}$) and the height over the Galactic plane ($z>1.75, rm{kpc}$). This places the system in the galactic thick disc. We measure a modulation in the centroid of the H$alpha$ line with a period of $P=0.11pm0.04, rm{d}$ which, combined with the recently presented FWHM-$K_2$ correlation, results in a massive black hole ($M_1>9.3 , rm{M_odot}$) and a $sim$ M2V companion star ($M_2sim 0.4, rm{M_odot}$). We also present further evidence supporting a very high orbital inclination ($igtrsim 80^circ$).
Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clear
We present time-resolved optical spectroscopy of the counterpart to the high-inclination black hole low-mass X-ray binary Swift J1357.2-0933 in quiescence. Absorption features from the mass donor star were not detected. Instead the spectra display pr
We present high time-resolution ULTRACAM optical and NOTCam infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 and 2013 show the system to be at its pre-outburst magnitude and so the system is i
We present rapid, multiwavelength photometry of the low-mass X-ray binary Swift J1357.2-0933 during its 2017 outburst. Using several sets of quasi-simultaneous ULTRACAM/NTT (optical), NuSTAR (X-ray), XRT/Swift (X-ray), SALT (optical) and ATCA (radio)
We present coordinated multiwavelength observations of the high Galactic latitude (b=+50 deg) black hole X-ray binary (XRB) J1357.2-0933 in quiescence. Our broadband spectrum includes strictly simultaneous radio and X-ray observations, and near-infra