ﻻ يوجد ملخص باللغة العربية
Hairpin vortices are widely studied as an important structural aspect of wall turbulence. The present work describes, for the first time, nonlinear traveling wave solutions to the Navier--Stokes equations in the channel flow geometry -- exact coherent states (ECS) -- that display hairpin-like vortex structure. This solution family comes into existence at a saddle-node bifurcation at Reynolds number Re=666. At the bifurcation, the solution has a highly symmetric quasistreamwise vortex structure similar to that reported for previously studied ECS. With increasing distance from the bifurcation, however, both the upper and lower branch solutions develop a vortical structure characteristic of hairpins: a spanwise-oriented head near the channel centerplane where the mean shear vanishes connected to counter-rotating quasistreamwise legs that extend toward the channel wall. At Re=1800, the upper branch solution has mean and Reynolds shear-stress profiles that closely resemble those of turbulent mean profiles in the same domain.
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and inv
A reduced description of shear flows consistent with the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow [J. Wang et al., Phys. Rev. Lett. 98, 204501 (2007)] is constructed. Exact time-independent nonlinear solutio
We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show
Exact coherent states of a linearly stable, plane parallel shear flow confined between stationary stress-free walls and driven by a sinusoidal body force (a flow first introduced by F. Waleffe, Phys. Fluids 9, 883 (1997)) are computed using equations
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities