ﻻ يوجد ملخص باللغة العربية
We study the performance of the latest $H(z)$ data in constraining the cosmological parameters of different cosmological models, including that of Chevalier-Polarski-Linder $w_{0}w_{1}$ parametrization. First, we introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble constant. As a result, we find that the $H(z)$ data do not rule out the possibility of either non-flat models or dynamical dark energy cosmological models. However, we verify that the time varying equation of state parameter $w(z)$ is not constrained by the current expansion data. Combining the $H(z)$ and the Type Ia supernova data we find that the $H(z)$/SNIa overall statistical analysis provides a substantial improvement of the cosmological constraints with respect to those of the $H(z)$ analysis. Moreover, the $w_{0}-w_{1}$ parameter space provided by the $H(z)$/SNIa joint analysis is in a very good agreement with that of Planck 2015, which confirms that the present analysis with the $H(z)$ and SNIa probes correctly reveals the expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo realizations in order to quantify the ability of the $H(z)$ data to provide strong constraints on the dark energy model parameters. The Monte Carlo approach shows significant improvement of the constraints, when increasing the sample to 100 $H(z)$ measurements. Such a goal can be achieved in the future, especially in the light of the next generation of surveys.
The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the reds
We forecast constraints on cosmological parameters in the interacting dark energy models using the mock data generated for neutral hydrogen intensity mapping (IM) experiments. In this work, we only consider the interacting dark energy models with ene
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model
$Om(z)$ is a diagnostic approach to distinguish dark energy models. However, there are few articles to discuss what is the distinguishing criterion. In this paper, firstly we smooth the latest observational $H(z)$ data using a model-independent metho
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125 (2011)] about constraints on the smoothness $alpha$ parameter and dark energy models using observational $H(z)$ data. It is argued here that their procedure is conceptually incons