ترغب بنشر مسار تعليمي؟ اضغط هنا

Contraints on unified models for dark matter and dark energy using H(z)

180   0   0.0 ( 0 )
 نشر من قبل Julio Cesar Fabris
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the redshift $z$, $H(z)$. We use the observational data for $H(z)$ to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters that may be compared with further analysis mainly at perturbative level.



قيم البحث

اقرأ أيضاً

We study the performance of the latest $H(z)$ data in constraining the cosmological parameters of different cosmological models, including that of Chevalier-Polarski-Linder $w_{0}w_{1}$ parametrization. First, we introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble constant. As a result, we find that the $H(z)$ data do not rule out the possibility of either non-flat models or dynamical dark energy cosmological models. However, we verify that the time varying equation of state parameter $w(z)$ is not constrained by the current expansion data. Combining the $H(z)$ and the Type Ia supernova data we find that the $H(z)$/SNIa overall statistical analysis provides a substantial improvement of the cosmological constraints with respect to those of the $H(z)$ analysis. Moreover, the $w_{0}-w_{1}$ parameter space provided by the $H(z)$/SNIa joint analysis is in a very good agreement with that of Planck 2015, which confirms that the present analysis with the $H(z)$ and SNIa probes correctly reveals the expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo realizations in order to quantify the ability of the $H(z)$ data to provide strong constraints on the dark energy model parameters. The Monte Carlo approach shows significant improvement of the constraints, when increasing the sample to 100 $H(z)$ measurements. Such a goal can be achieved in the future, especially in the light of the next generation of surveys.
Recently, in [1] we developed a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. In this article, we reconstruct the interaction function expanding it in terms of only the first four Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w=-1 (an interacting cosmological Lambda), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated. In all the cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q=0 in the recent past within the 1-sigma and 2-sigma errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components. Finally, we conclude that in this scenario, the observations put strong constraints on the strength of the interaction so that its magnitude can not solve the coincidence problem or at least alleviate significantly.
177 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the line ar approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
We exploit the gauge-invariant formalism to analyse the perturbative behaviour of two cosmological models based on the generalized Chaplygin gas describing both dark matter and dark energy in the present Universe. In the first model we consider the g eneralized Chaplygin gas alone, while in the second one we add a baryon component to it. We extend our analysis also into the parameter range $alpha > 1$, where the generalized Chaplygin gas sound velocity can be larger than that of light. In the first model we find that the matter power spectrum is compatible with the observed one only for $alpha < 10^{-5}$, which makes the generalized Chaplygin gas practically indistinguishable from $Lambda$CDM. In the second model we study the evolution of inhomogeneities of the baryon component. The theoretical power spectrum is in good agreement with the observed one for almost all values of $alpha$. However, the growth of inhomogeneities seems to be particularly favoured either for sufficiently small values of $alpha$ or for $alpha gtrsim 3$. Thus, it appears that the viability of the generalized Chaplygin gas as a cosmological model is stronger when its sound velocity is superluminal. We show that in this case the generalized Chaplygin gas equation of state can be changed in an unobservable region in such a way that its equivalent $k$-essence microscopical model has no problems with causality.
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgos third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{rm A} sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $sim1.31times10^{-47}$ at $m_{rm A}sim4.2times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $sim 1.2times 10^{-47}$ at $m_{rm A}sim 5.7times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $sim100$ for $m_{rm A}sim [2-4]times 10^{-13}$ eV/$c^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا