ترغب بنشر مسار تعليمي؟ اضغط هنا

Cartography of Triangulum-Andromeda using SDSS stars

69   0   0.0 ( 0 )
 نشر من قبل Helio Dotto Perottoni
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The outer Galactic halo is home to a number of substructures which still have an uncertain origin, but most likely are remnants of former interactions between the Galaxy and its former satellites. Triangulum-Andromeda (TriAnd) is one of these halo substructures, found as an overdensity of 2MASS M giants. We analyzed the region of Triangulum-Andromeda using photometric data from the Ninth Data Release of Sloan Digital Sky Survey (SDSS DR9). By comparing the observations with simulations from the TRILEGAL Galactic model, we were able to identify and map several scattered overdensities of main sequence stars that seem to be associated with TriAnd over a large area covering $sim 500$ deg$^2$. One of these excesses may represent a new stellar overdensity. We also briefly discuss an alternative hypothesis, according to which TriAnd is one of the troughs of oscillation rings in the Galactic disk.



قيم البحث

اقرأ أيضاً

As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructure in the distance range 20-30 kpc, and the relation of these features to each other -- if any -- remains unclear. This complex situation motivates this re-examination of the TriAnd region with a photometric and spectroscopic survey of M giants. An exploration using 2MASS photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. (2004) spanning the range $100^{circ}<l<160^{circ}$ and $-50^{circ}<b<-15^{circ}$ but, in addition, a second, brighter and more densely populated M giant sequence. These two sequences are likely associated with the two distinct main-sequences discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. (2007) in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter RGB/AGB sequence of Rocha-Pinto et al. (2004). Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MSTO features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of $sim$ 15-21 kpc), while the fainter sequence (TriAnd2) is older (10-12 Gyr) and is at an estimated distance of $sim$ 24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages. [Abridged]
The close relationship between the nature of the Triangulum-Andromeda (TriAnd) overdensity and the Galactic disk has become increasingly evident in recent years. However, the chemical pattern of this overdensity (R$_{GC}$ = 20 - 30 kpc) is unique and differs from what we know of the local disk. In this study, we analyze the chemical abundances of five $alpha$ elements (Mg, O, Si, Ca, and Ti) in a sample of stars belonging to the TriAnd overdensity, including stars with [Fe/H] $<$ $-$1.2, to investigate the evolution of the $alpha$ elements with metallicity. High-resolution spectra from Gemini North with GRACES were analyzed. Overall, the TriAnd population presents an $alpha$-element pattern that differs from that of the local disk; the TriAnd stars fall in between the local disk and the dwarf galaxies in the [X/Fe] vs. [Fe/H] plane. The high [Mg/Fe] ratios obtained for the lower metallicity TriAnd stars may indicate a roughly parallel sequence to the Milky Way local disk at lower values of [Fe/H], revealing a knee shifted towards lower metallicities for the TriAnd population. Similar behavior is also exhibited in the [Ca/Fe] and [Si/Fe] ratios. However, for O and Ti the behavior of the [X/Fe] ratios shows a slight decay with decreasing metallicity. Our results reinforce the TriAnd overdensity as a unique stellar population of the Milky Way, with an abundance pattern that is different from all stellar populations studied to date. The complete understanding of the complex TriAnd population will require high-resolution spectroscopic observations of a larger sample of TriAnd stars.
The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disrup tion of a dwarf galaxy or a distant extension of the Galactic disk. We test these hypotheses using chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Surveys 14th Data Release of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph, and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ~ -0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity --- i.e., past a Galactocentric radius of 24 kpc --- albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.
Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, A 13, first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion of $lesssim$ 40 $mathrm{km~s^{-1}}$, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance ($sim$15~kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.
We present panchromatic resolved stellar photometry for 22 million stars in the Local Group dwarf spiral Triangulum (M33), derived from Hubble Space Telescope (HST) observations with the Advanced Camera for Surveys (ACS) in the optical (F475W, F814W) , and the Wide Field Camera 3 (WFC3) in the near ultraviolet (F275W, F336W) and near-infrared (F110W, F160W) bands. The large, contiguous survey area covers $sim$14 square kpc and extends to 3.5 kpc (14 arcmin, or 1.5-2 scale lengths) from the center of M33. The PHATTER observing strategy and photometry technique closely mimic those of the Panchromatic Hubble Andromeda Treasury (PHAT), but with updated photometry techniques that take full advantage of all overlapping pointings (aligned to within $<$5-10 milliarcseconds) and improved treatment of spatially-varying point spread functions. The photometry reaches a completeness-limited depth of F475W$sim$28.5 in the lowest surface density regions observed in M33 and F475W$sim$26.5 in the most crowded regions found near the center of M33. We find the young populations trace several relatively tight arms, while the old populations show a clear, looser two-armed structure. We present extensive analysis of the data quality including artificial star tests to quantify completeness, photometric uncertainties, and flux biases. This stellar catalog is the largest ever produced for M33, and is publicly available for download by the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا