ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Halo Substructure with Giant Stars: The Nature of the Triangulum-Andromeda Stellar Features

143   0   0.0 ( 0 )
 نشر من قبل Allyson Sheffield
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructure in the distance range 20-30 kpc, and the relation of these features to each other -- if any -- remains unclear. This complex situation motivates this re-examination of the TriAnd region with a photometric and spectroscopic survey of M giants. An exploration using 2MASS photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. (2004) spanning the range $100^{circ}<l<160^{circ}$ and $-50^{circ}<b<-15^{circ}$ but, in addition, a second, brighter and more densely populated M giant sequence. These two sequences are likely associated with the two distinct main-sequences discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. (2007) in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter RGB/AGB sequence of Rocha-Pinto et al. (2004). Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MSTO features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of $sim$ 15-21 kpc), while the fainter sequence (TriAnd2) is older (10-12 Gyr) and is at an estimated distance of $sim$ 24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages. [Abridged]



قيم البحث

اقرأ أيضاً

Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, A 13, first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion of $lesssim$ 40 $mathrm{km~s^{-1}}$, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance ($sim$15~kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.
We report here the discovery of an apparent excess of 2MASS M giant candidates with dereddened 0.85 < J-K_S < 1.2 spanning a considerably large area of the celestial sphere between, at least, $100degr < l < 150degr$ and $-20degr > b > -40degr$, and c overing most of the constellations of Triangulum and Andromeda. This structure does not seem to be preferentially distributed around a clear core, but rather lies in a tenuous, clumpy cloud-like structure tens of kiloparsecs away. The reduced proper-motion diagram as well as spectroscopy of a subsample shows these excess stars to be real giants, not contaminating dwarfs. Radial velocity measurements indicate among those M giants the presence of a coherent kinematical structure with a velocity dispersion $sigma < 17$ km s$^{-1}$. Our findings support the existence of a quite dispersed stellar structure around the Milky Way that, due to its coreless and sparse distribution, could be part of a tidal stream or a new kind of satellite galaxy.
273 - Jeffrey D. Crane 2003
To determine the nature of the recently discovered, ring-like stellar structure at the Galactic anticenter, we have collected spectra of a set of presumed constituent M giants selected from the 2MASS point source catalog. Radial velocities have been obtained for stars spanning ~100 degrees, exhibiting a trend in velocity with Galactic longitude and an estimated dispersion of 20 +/- 4 km/sec. A mean metallicity [Fe/H] = -0.4 +/- 0.3 measured for these stars combines with previous evidence from the literature to suggest a population with a significant metallicity spread. In addition, a curious alignment of at least four globular clusters of lower mean metallicity is noted to be spatially and kinematically consistent with this stellar distribution. We interpret the M giant sample position and velocity variation with Galactic longitude as suggestive of a satellite galaxy currently undergoing tidal disruption in a non-circular, prograde orbit about the Milky Way.
This letter reports on the Galactic stellar structures that appear in the foreground of our Canada-France-Hawaii-Telecopse/MegaCam survey of the halo of the Andromeda galaxy. We recover the main sequence and main sequence turn-off of the Triangulum-A ndromeda structure recently found by Majewski and collaborators at a heliocentric distance of ~20 kpc. The survey also reveals another less populated main sequence at fainter magnitudes that could correspond to a more distant stellar structure at ~28 kpc. Both structures are smoothly distributed over the ~76 sq. deg. covered by the survey although the closer one shows an increase in density by a factor of ~2 towards the North-West. The discovery of a stellar structure behind the Triangulum-Andromeda structure that itself appears behind the low-latitude stream that surrounds the Galactic disk gives further evidence that the inner halo of the Milky Way is of a spatially clumpy nature.
We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric ra nge of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا