ﻻ يوجد ملخص باللغة العربية
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature 547, 298 (2017)], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k-dot-p band structures across the Brillouin zone in terms of graph theory. In the current manuscript we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph-theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.
The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time-reversal in his theory of elementary band
The past decades apparent success in predicting and experimentally discovering distinct classes of topological insulators (TIs) and semimetals masks a fundamental shortcoming: out of 200,000 stoichiometric compounds extant in material databases, only
We report on the magnetotransport properties of a prototype Mott insulator/band insulator perovskite heterojunction in magnetic fields up to 31 T and at temperatures between 360 mK and 10 K. Shubnikov-de Haas oscillations in the magnetoresistance are
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki
Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual