ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductor-insulator transition in fcc-GeSb2Te4 at elevated pressures

82   0   0.0 ( 0 )
 نشر من قبل Bar Hen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that polycrystalline GeSb2Te4 in the fcc phase (f-GST), which is an insulator at low temperature at ambient pressure, becomes a superconductor at elevated pressures. Our study of the superconductor to insulator transition versus pressure at low temperatures reveals a second order quantum phase transition with linear scaling (critical exponent close to unity) of the transition temperature with the pressure above the critical zero-temperature pressure. In addition, we demonstrate that at higher pressures the f-GST goes through a structural phase transition via amorphization to bcc GST (b-GST), which also become superconducting. We also find that the pressure regime where an inhomogeneous mixture of amorphous and b-GST exists, there is an anomalous peak in magnetoresistance, and suggest an explanation for this anomaly.



قيم البحث

اقرأ أيضاً

Superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect. The data provide evidence for a two dimensional quantum superconductor to insulator (2D-QSI) transition. Here we explore the co mpatibility of this phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-QSI transition. In an intermediate regime, limited by a finite size effect, we uncover remarkable consistency with BKT- criticality, weak localization in the insulating state and non-Drude behavior in the normal state. Our estimates for the critical exponents of the 2D-QSI-transition, z =1 and nu=3, suggest that it belongs to the 3D-xy universality class.
The superconductor-insulator transition of ultrathin films of bismuth, grown on liquid helium cooled substrates, has been studied. The transition was tuned by changing both film thickness and perpendicular magnetic field. Assuming that the transition is controlled by a T=0 critical point, a finite size scaling analysis was carried out to determine the correlation length exponent v and the dynamical critical exponent z. The phase diagram and the critical resistance have been studied as a function of film thickness and magnetic field. The results are discussed in terms of bosonic models of the superconductor-insulator transition, as well as the percolation models which predict finite dissipation at T=0.
The pressure induced superconductivity and structural evolution for Bi2Se3 single crystal have been studied. The emergence of superconductivity with onset transition temperature (Tc) about 4.4K is observed around 12GPa. Tc increases rapidly to the hi ghest 8.5K at 16GPa, decreases to 6.5K at 21GPa, then keep almost constant. It is found that Tc versus pressure is closely related to the carrier density which increases by more than two orders of magnitude from 2GPa to 23GPa. High pressure synchrotron radiation measurements reveal structure transitions occur around 12GPa, 20GPa, and above 29GPa, respectively. A phase diagram of superconductivity versus pressure is obtained.
We provide a microscopic-level derivation of earlier results showing that, in the critical vicinity of the superconductor-to-insulator transition (SIT), disorder and localization become negligible and the structure of the emergent phases is determine d by topological effects arising from the competition between two quantum orders, superconductivity and superinsulation. We find that, around the critical point, the ground state is a composite incompressible quantum fluid of Cooper pairs and vortices coexisting with an intertwined Wigner crystal for the excess (with respect to integer filling) excitations of the two types.
110 - L. K. Ma , B. Lei , N. Z. Wang 2018
How to control collectively ordered electronic states is a core interest of condensed matter physics. We report an electric field controlled reversible transition from superconductor to ferromagnetic insulator in (Li,Fe)OHFeSe thin flake using solid ion conductor as the gate dielectric. By driving Li ions into and out of the (Li,Fe)OHFeSe thin flake with electric field, we obtained a dome-shaped superconducting region with optimal Tc ~ 43 K, which is separated by a quantum critical point from ferromagnetically insulating phase. The ferromagnetism arises from the long range order of the interstitial Fe ions expelled from the (Li,Fe)OH layers by Li injection. The device can reversibly manipulate collectively ordered electronic states and stabilize new metastable structures by electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا